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− Contexte
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1Qu’est ce qu’un signal ?
C’est une fonction du temps.
La figure ci-contre est une pression acoustique correspondant au mot
« Bonjour » par un certain locuteur.

− Qu’est ce que le traitement du signal ?
C’est reproduire automatiquement le traitement effectué par un expert :

— Electrocardiogramme (ECG) : le patient est-il sain ou cardiaque ?
— Tension, courant, vibrations : le moteur présente-t-il un défaut ?
— Le signal contient-il des phénomènes périodiques ? De quelle période ?
— Morceau de musique : quelle est la partition ?

− L’outil fondamental est la transformée de Fourier.
D’une fonction du temps, on obtient une fonction de la fréquence.
L’idée de fréquence est naturelle :

— « LA » du diapason : 440 Hz
— Fréquences radio
— Réglage aigu/grave, égaliseur

− Dans le monde numérique actuel, un signal transmis, stocké, traité numériquement, a subi échantillonnage et
quantification : il est converti en une suite de 0 et de 1. On verra les effets de l’échantillonnage, passage du temps
continu au temps discret.

− D’autres outils, les transformées de Laplace et en z, sont plus généraux que la transformée de Fourier, on les
utilisera dans l’étude des systèmes.

Entrées Système Sorties
− Qu’est ce qu’un système ?

C’est une relation de cause à effet entre signaux.

— la température affichée par un thermomètre par rapport à la température du milieu ambiant ;
— la trajectoire d’un robot marcheur par rapport aux couples fournis par ses moteurs.

− Modéliser un système, c’est en définir une représentation mathématique.
On se limitera ici aux systèmes linéaires temporellement invariants (LTI), représentés par :

— fonction de transfert ;
— espace d’état.

− Pourquoi modéliser ?
Le modèle (s’il est correct) du système permet de prévoir, sans disposer du système, son comportement, c’est-à-dire
de le simuler. Les objectifs sont par exemple :

— les économies (une simulation est répétable) ;
— l’aide à la conception (dimensionnement des actionneurs. . .).

− Comment simuler ?
Pour un système LTI et une entrée simples, on peut calculer la sortie à la main.
Dans les cas plus complexes, on a recours à des outils de simulation informatique.

v
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− Objectifs et moyens

A l’issue de cette formation, on saura :

— échantillonner un signal ;
— en faire une analyse de Fourier ;
— modéliser un système physique continu par le langage des fonctions de transfert ;
— modéliser un système physique continu par le langage de l’espace d’état ;
— lier les phénomènes physiques aux paramètres de ces représentations (temps de réponse, stabilité) ;
— interfacer le temps continu et le temps discret ;
— simuler ces représentations à l’aide de logiciels adaptés.

− Les travaux pratiques seront :

— la reconstruction d’une partition à partir de l’enregistrement audio-phonique ;
— le pilotage en simulation d’une navette spatiale, version très simplifiée d’un contrat avec l’agence spatiale

européenne.

− On utilisera l’environnement de calcul Matlab, dans lequel est intégré l’outil de simulation Simulink,
ou l’environnement de calcul Scilab, dans lequel est intégré l’outil de simulation Xcos.
L’environnement de calcul Octave est presque équivalent à Matlab, mais ne dispose pas d’outil graphique de
simulation.

− Sur Hippocampus, une introduction à Matlab ou Octave est disponible, avec exercices sur ordinateur, à réaliser en
autonomie avant le TD no2.

− On doit connaître au préalable :

— les nombres complexes ;
— la dérivation et l’intégration d’une fonction d’une variable réelle à valeur réelle ;

on n’a pas à craindre leur extension aux fonctions d’une variable réelle à valeur complexe, les
mécanismes de calculs sont analogues ; on n’a pas besoin de connaissances approfondies sur les
fonctions d’une variable complexe à valeur complexe ;

— les suites de nombres réels ou complexes ;

on n’a pas à craindre les quelques calculs élémentaires de séries ;

— le calcul matriciel ;
— les valeurs et vecteurs propres, la diagonalisation d’une matrice carrée.

. Les formules seront cohérentes pour la dimensionnalité !

−T0 Le numéro ci-contre, numéro du transparent dans la projection, apparaît dans le document imprimable.
On distinguera les mots importants,
les définitions et enumérations,
les points méritant une attention particulière, .
les animations, Y

les preuves, uniquement dans le document imprimable, P1

les difficultés mathématiques. ª

− Abréviations

ssi si et seulement si
LTI linéaire temporellement invariant

P1. . . .Et ces preuves sont en bas de page

https://autorobo.ec-nantes.fr/movie/video.php?file=sincomp.mp4


T1 Chapitre 1

Concepts et outils fondamentaux

T2 1.1 Temps continu, temps discret

Un signal à temps continu est une fonction d’une variable réelle à valeur dans un ensemble X :

x : R −→ X
t 7−→ x(t)

t est le temps (l’origine des temps doit être spécifiée, t peut être négatif).

La température en un endroit donné est un tel signal (X = R).

− Un signal à temps discret (ou série temporelle) est une suite de valeurs d’un ensemble X :

x = (x[n])n∈Z

n est un indice temporel (par exemple, le ne jour depuis le 1er janvier 1970, n peut être négatif).

Un signal à temps discret peut être :

— intrinsèquement à temps discret (l’heure du coucher du soleil) ;
— obtenu par échantillonnage temporel d’un signal à temps continu (la température à midi).

Pour tout n, x[n] est l’échantillon (sample) prélevé au temps discret n.

T3 Ne pas confondre :

— le temps, qui peut être discret (n ∈ Z) ou continu (t ∈ R),
— et la valeur, qui peut être discrète (X dénombrable) ou continue.

Dans cette formation, les signaux sont à valeur continue complexe. 1

ý Exercice 1. Dans la rubrique nécrologique d’un journal local, on peut lire qu’un général est décédé dans sa soixante-
quinzième année. Quel est son âge à son décès : 74 ans, 75 ans, 76 ans ?

1. En pratique, les signaux sont à valeur réelle ; la généralisation aux signaux complexes ne pose aucun problème théorique.

1



2 CHAPITRE 1. CONCEPTS ET OUTILS FONDAMENTAUX

T4 1.2 Voyage dans le temps

Soit x un signal. Diverses opérations créent un autre signal.

− Le signal renversé (ou retourné, ou réflechi) temporellement est :

t 7→ x(−t) (x[−n])n (1.1)

− Le signal translaté (ou décalé) temporellement est (t0 ∈ R, n0 ∈ Z) :

t 7→ x(t− t0) (x[n− n0])n (1.2)

(t′, x(t′)) a pour image (t′ + t0, x(t
′)). (n′, x[n′]) a pour image (n′ + n0, x[n]).

Selon le signe de t0 ou n0 :

— si t0 > 0 ou n0 > 0, le signal est retardé (décalé vers le futur) ;
— si t0 < 0 ou n0 < 0, le signal est avancé (décalé vers le passé).

T5 En temps continu, le changement d’échelle de temps donne le signal (a ∈ R∗) :

t 7→ x
(
t
a

)
(1.3)

(t′, x(t′)) a pour image (a t′, x(t′)).

Soit a un facteur d’échelle adimensionnel préservant l’unité de temps :

— si |a| > 1, le signal est dilaté le long de l’axe des temps (ralenti) ;
— si |a| < 1, le signal est contracté le long de l’axe des temps (accéléré).

− En temps discret,

— l’interpolation consiste à insérer N − 1 zéros entre les échantillons (N ∈ N∗) :

x↑N [n] =

{
x
[
n
N

]
si n

N est entier
0 sinon

(1.4)

(n′, x[n′]) a pour image (N n′, x[n′]) ; il y a bourrage de zéros ;
— la décimation consiste à ne conserver qu’un échantillon sur N :

x↓N [n] = x[N n] (1.5)

si n
′

N est entier, (n′, x[n′]) a pour image (n
′

N , x[n′]) ; sinon, il y a perte de données.

T6 ý Exercice 2. Soit la transformation du signal x définie par t 7→ x
( t−t0

a

)
(a est adimensionnel).

a) Quelle est l’image du point (t′, x(t′)) ?
b) Pour le signal ci-dessous, tracer le signal transformé avec la translation (a, t0) = (1,−2s), le changement d’échelle

(a, t0) = (2, 0 s), et (a, t0) = (2,−2 s).

−2 0 2 4 6 8
0

1

2

t (s)

x
(t

)

−2 0 2 4 6 8
0

1

2

t (s)

x
(t

+
2

s)

−2 0 2 4 6 8
0

1

2

t (s)

x
(
t 2
)

−2 0 2 4 6 8
0

1

2

t (s)

x
(
t+

2
s

2
)

T7 ý Exercice 3. Pour le signal x ci-dessous, tracer x↑2, x↓2, et x↓2↑2.

−2 0 2 4 6 8
• •

•
•

•
•

•
• • • •

n

x
[n

]

−4 0 4 8 12 16
n

x
↑2

[n
]

−1 0 1 2 3 4
n

x
↓2

[n
]

. Pour tout signal à temps discret x, pour tout N ∈ N∗ :
— x↑N↓N = x,
— x↓N↑N = x 1↑N avec 1 la suite constante égale à 1.



1.3. FONCTIONS ET SUITES ÉLÉMENTAIRES 3

T8 1.3 Fonctions et suites élémentaires

En traitement du signal, on cherche une représentation mathématique des phénomènes observés, qui peut être faite
dans un domaine non temporel.

Dans les sections suivantes, on définit :

— dans le cas continu, des fonctions t 7→ x(t) ou θ 7→ x(θ) d’une variable réelle (∈ R) notée t ou θ,
— dans le cas discret, des suites (x[n])n, fonctions d’une variable entière (∈ Z) notée n,

avec les conventions de notation suivantes :

— t ne désigne pas nécessairement le temps ;
— θ est adimensionnelle ; 2

— n n’est pas nécessairement un indice temporel ;
— n est adimensionnel ; 3

— T est un paramètre réel positif, homogène à t. 4

— N est un paramètre entier positif.

2. Une unité peut être sans dimension, comme le radian. exp, sin, cos s’appliquent à des variables adimensionnelles.
3. Comme spécifié dans le système international d’unités pour les grandeurs de comptage.
4. Avec une fonction θ 7→ x(θ), on définit une nouvelle fonction t 7→ 1

T
x( t

T
) de même intégrale.
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T9 Constante unité
1(t) = 1 1[n] = 1 (1.6)

0

1

2

t
1
(t

)
0

1

2

• • • • • • • • • • • • • • • • •

n

1
[n

]

− Echelon 5

step(t) =

{
0 si t < 0

1 si t > 0
step[n] =

{
0 si n < 0

1 si n ⩾ 0
(1.7)

0

1

2

0
t

st
ep

(t
)

0

1

2

• • • • • • • •

• • • • • • • • •

0
n

st
ep

[n
]

T10 Rampe

ramp(t) =

{
0 si t < 0

t si t > 0
ramp[n] =

{
0 si n ⩽ 0

n si n > 0
(1.8)

pe
nt

e
1

0
0

t

ra
m

p
(t

)

0
0

3

3

• • • • • • • • • •
• •

• •
• •

n

ra
m

p
[n

]

La rampe est la primitive, ou la somme cumulée, de l’échelon s’annulant en −∞.
Inversement, l’échelon est la dérivée, ou la différence à droite, de la rampe.

∫ t

−∞
step(τ) d τ = ramp(t)

n−1∑

k=−∞
step[k] = ramp[n]

step(t) =
d ramp

d t
(t) step[n] = ramp[n+ 1]− ramp[n]

(1.9)

T11 Fenêtre rectangulaire

rect(θ) =

{
1 si − 1

2 < θ < 1
2

0 sinon
rectN [n] =

{
1 si 0 ⩽ n ⩽ N − 1

0 sinon
(1.10)

0

1

2

T
2−T

2
t

re
ct

(
t T
)

0

1

2

• • • • • • • •

• • • •

• • • • •
0 3
n

re
ct

4
[n

]

T12 Fenêtre triangulaire 6

tri(θ) = max(1− |θ| , 0) bartlettN [n] = max(1− 2
N−1

∣∣n− N−1
2

∣∣ , 0) (1.11)

0

1

2

T−T
t

tr
i(

t T
)

0

1

2

• • • • • • • • • •
• • • • • • •

0 77
2

n

b
a
rt

le
tt

8
[n

]

. Les suites rectangulaire et triangulaire ne peuvent être rendues paires par translation sur n que si N est impair.
La suite triangulaire de Bartlett n’atteint 1 que si N est impair.

5. Dit échelon de Heaviside dans le cas continu.
6. Il existe plusieurs conventions pour les suites triangulaires, la convention de Bartlett est indiquée ici.
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ý Exercice 4. Exprimer (sans intégration) la rampe avec l’échelon, puis avec la fonction max. Exprimer les fenêtres
rectangulaire et triangulaire (cas continu) sous la forme d’une somme d’échelons ou de rampes.

T13 1.4 Impulsion et peigne impulsionnel

Pour les fonctions d’une variable réelle, on introduit l’impulsion et le peigne de Dirac.
Pour les suites, on introduit l’impulsion et le peigne de Kronecker.

−4 0 4

1√
2π

θ

g
a
u
ss

(θ
)− Une définition rigoureuse de l’impulsion de Dirac nécessite la théorie des distributions.

On se contentera d’une approche intuitive, construite sur la fonction de Gauss,
d’intégrale 1, infiniment dérivable :

gauss(θ) = 1√
2π

exp(− θ
2

2 ) (1.12)

L’impulsion de Kronecker ne pose pas de difficulté mathématique.

T14 Les impulsions de Dirac et de Kronecker sont définies par :

ª δ(t) =

{
+∞ si t = 0

0 sinon
avec

∫ +∞

−∞
δ(t) d t = 1 δ[n] =

{
1 si n = 0

0 sinon
(1.13)

0
0

t

δ(
t)

0

1

2

• • • • • • • •

•

• • • • • • • •
0
n

δ[
n
]

ª t 7→ 1
T rect

(
t
T

)
et t 7→ 1

T gauss
(

t
T

)
, d’intégrale 1, tendent vers l’impulsion de Dirac quand T ↓ 0. Y

T15 Intégrer, ou sommer, l’impulsion sur un intervalle contenant l’origine donne 1 (0 dans le cas contraire).

Donc, l’échelon est la primitive, ou la somme cumulée, de l’impulsion s’annulant en −∞.
Inversement, l’impulsion est la dérivée, ou la différence à gauche, de l’échelon. Y

∫ t

−∞
δ(τ) d τ = step(t)

n∑

k=−∞
δ[k] = step[n]

δ(t) =
d step

d t
(t) δ[n] = step[n]− step[n− 1]

(1.14)

t0

0
α
T

t

α
δ
(t
−
t 0
)T16 L’impulsion de Dirac de poids α ∈ C en t0 est t 7→ α δ(t− t0) ;

son intégrale vaut α.

Elle est représentée par une flèche en t0 de longueur proportionnelle à |α|, d’angle
arg(α) par rapport à l’axe réel.
Ci-contre, α ∈ R−, le facteur arbitraire de proportionnalité est 1

T .

ª L’impulsion de Dirac est la dérivée de l’échelon. Plus généralement, si une fonction a une discontinuité en un
point, sa dérivée y présente un Dirac de poids égal au saut.

ª L’impulsion de Dirac peut être infiniment dérivée. Sa dérivée première est le doublet. Y

Intuitivement, le doublet est infiniment grand positif juste avant 0, infiniment grand négatif juste après 0.
De même, les dérivées répétées sont infiniment grandes dans un proche voisinage de 0.

. t δ(t) = 0, et est sans dimension.
Soit a ∈ R∗. t 7→ δ

(
t
a

)
est une impulsion de poids |a| : δ

(
t
a

)
= |a| δ(t)

https://autorobo.ec-nantes.fr/movie/video.php?file=rect2dirac.mp4
https://autorobo.ec-nantes.fr/movie/video.php?file=dirac4.mp4
https://autorobo.ec-nantes.fr/movie/video.php?file=doublet.mp4
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T17 Le peigne de Dirac et le peigne de Kronecker sont des versions périodisées de l’impulsion : 7

X(θ) =

+∞∑

k=−∞
δ(θ − k) 1↑N [n] =

+∞∑

k=−∞
δ[n− kN ] (1.15)

0 T 2 T 3 T−T−2T−3T
0

t

1 T
X

(
t T
)

−8 −4 0 4 8
0

1

2

• • • • •

• • • • • • • • • • • •

n

1
↑4

[n
]

. t 7→ 1
T X

(
t
T

)
est le peigne de Dirac T -périodique, somme d’impulsions de poids 1 espacées de T .

1↑N est le peigne de Kronecker N -périodique, somme d’impulsions d’amplitude 1 espacées de N .

T18 ý Exercice 5. Tracer la primitive du peigne de Dirac T -périodique nulle en t = −T
2 .

−3

−2

−1

0

1

2

3

0 T 2 T T−T−2T−3T

t

7. La notation du peigne de Kronecker indique que le peigne s’obtient par interpolation de la suite unité (voir page 2).
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T19 1.5 Convolution

Soit x et y deux fonctions d’une variable réelle, ou deux suites ; leur produit de convolution x ∗ y est une
fonction d’une variable réelle, ou une suite, définie par :

(x ∗ y)(t) =
∫ +∞

−∞
x(τ) y(t− τ) d τ (x ∗ y)[n] =

+∞∑

k=−∞
x[k] y[n− k] (1.16)

− La convolution est commutative, associative, d’élément neutre δ :

x ∗ y = y ∗ x
(x ∗ y) ∗ z = x ∗ (y ∗ z)

x ∗ δ = x

(1.17)

T20 Cette dernière propriété (x ∗ δ = x) constitue la propriété d’extraction : 8

∫ +∞

−∞
x(τ) δ(t− τ) d τ = x(t)

+∞∑

k=−∞
x[k] δ[n− k] = x[n] (1.18)

− La convolution avec l’élément neutre décalé décale : 9

x ∗ (t 7→ δ(t− t0)) = (t 7→ x(t− t0)) x ∗ (δ[n− n0])n = (x[n− n0])n (1.19)

− On peut modéliser un électro-cardiogramme par une convolution entre un signal de support fini (représentant la
suite des ondes PQRST lors d’un battement) et un train d’impulsions (caractérisant la régularité des battements). Y

T21 Si x et y sont périodiques de même période (T en continu, N en discret), leur produit de convolution
circulaire x⊛ y s’écrit :

(x⊛ y)(t) =

∫ T

0

x(τ) y(t− τ) d τ (x⊛ y)[n] =

N−1∑

k=0

x[k] y[n− k] (1.20)

− Ce produit est périodique, de même période.
La convolution circulaire est commutative et associative.
L’élément neutre est t 7→ 1

T X( t
T ) en continu, 1↑N en discret.

La convolution circulaire avec l’élément neutre décalé décale :

x⊛
(
t 7→ 1

T X( t−t0
T )

)
= (t 7→ x(t− t0)) x⊛ (1↑N [n− n0])n = (x[n− n0])n (1.21)

T22 ý Exercice 6. Tracer sur le même graphique τ 7→ rect(τ) et τ 7→ rect(t − τ) dans les 4 cas suivants : t < −1,
−1 < t < 0, 0 < t < 1, 1 < t. Exprimer rect ∗ rect.

T23 1.6 Causalité, anticausalité

Une suite est dite causale si elle est nulle pour n < 0.
Elle est dite anticausale si elle est nulle pour n > 0.

L’impulsion de Kronecker est causale et anticausale.
Une suite peut n’être ni causale, ni anticausale.

− Pour les fonctions d’une variable réelle, la définition mérite plus d’attention.

ª Une fonction est causale si elle est nulle pour t < 0 et n’a pas de dérivée 10 de l’impulsion de Dirac en t = 0.
Elle est anticausale si elle est nulle pour t > 0 et n’a pas de dérivée de l’impulsion de Dirac en t = 0. 11

L’impulsion de Dirac est causale et anticausale.
Ses dérivées répétées ne sont ni causales ni anticausales.

8. Cette propriété est généralisable à d
k
δ

d t
k ; par récurrence, en intégrant par parties :

∫+∞
−∞ x(τ) d

k
δ

d t
k (t− τ) d τ = d

k
x

d t
k (t)

9. t0 ∈ R, n0 ∈ Z
10. D’ordre ⩾ 1.
11. En effet, le doublet est infiniment grand positif juste avant 0, infiniment grand négatif juste après 0.

De même, les dérivées répétées sont infiniment grandes dans un proche voisinage de 0. Y

https://autorobo.ec-nantes.fr/movie/video.php?file=demove2.mp4
https://autorobo.ec-nantes.fr/movie/video.php?file=doublet.mp4
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T24 1.7 Sinus cardinal, noyau de Dirichlet

−4−3−2−1 0 1 2 3 4
−1

0

1

θ

si
n
c(

θ)

− Sinus cardinal

sinc(θ) =

{
sin(π θ)

π θ si θ ̸= 0

1 si θ = 0
(1.22)

Il est à valeur réelle, et pair : sinc(−θ) = sinc(θ).
Il s’annule pour tout entier non-nul : sinc(n) = δ[n].

ª On admet qu’il est d’intégrale 1. C’est l’intégrale de Dirichlet.

T25 Noyau de Dirichlet

DN (θ) =

{
sin(N π θ)
sin(π θ) e−j π (N−1) θ si θ ̸∈ Z

N si θ ∈ Z
(1.23)

Il est à valeur complexe, et hermitien : DN (−θ) = D∗
N (θ).

Il s’annule pour tout multiple de 1
N non entier : DN ( n

N ) = N 1↑N [n].
Il est 1-périodique, d’intégrale 1 sur une période.

− La fonction θ 7→ DN (θ) + DN (−θ) − 1 est à valeur réelle, paire, 1-périodique, d’intégrale 1 sur une période, sa
valeur absolue est le module de D2N−1.

− Les figures ci-dessous représentent les fonctions de même module θ 7→ D9(θ) et θ 7→ D5(θ) + D5(−θ)− 1.

−1 0 1
−9

0

9

•••••••• ••••••••

• • •

θ

D
5
(θ

)
+

D
5
(−

θ
)
−

1

T26 1.8 Quatre formules fondamentales
ª On admet qu’au sens des distributions : Y Y

lim
T→0

1
T sinc( t

T ) = δ(t) lim
N→+∞

DN (θ) + DN (−θ)− 1 = X(θ) (1.24)

Or, on montre facilement que :

1
T sinc( t

T ) =

∫ +
1

2T

− 1
2T

ej 2π f t d f DN (θ) =

N−1∑

k=0

ej 2π k θ (1.25)

T27 On vient d’admettre les formules ci-dessous sur l’impulsion et le peigne de Dirac ;
Leurs équivalents pour l’impulsion et le peigne de Kronecker se démontrent sans difficulté.

ª Dirac Kronecker

Impulsion δ(t) =

∫ +∞

−∞
ej 2π f t d f δ[n] =

∫ + 1
2

− 1
2

ej 2π λn dλ (1.26)

Peigne 1
T X( t

T ) =
1
T

+∞∑

k=−∞
ej 2π k t

T 1↑N [n] = 1
N

N−1∑

k=0

ej 2π k n
N (1.27)

− Ces 4 formules constituent la synthèse des impulsions et peignes par une somme de sinusoïdes complexes (page
9) ; les paramètres de ces sinusoïdes sont obtenues par analyse de Fourier :

— la transformée de Fourier (Fcc, page 10) de l’impulsion de Dirac est la fonction 1 ;
— la décomposition en série de Fourier (Fcd, page 21) du peigne de Dirac est la suite 1 ;
— la transformée de Fourier (Fdc, page 12) de l’impulsion de Kronecker est la fonction 1 ;
— la transformée de Fourier discrète (Fdd, page 21) du peigne de Kronecker est la suite 1.

https://autorobo.ec-nantes.fr/movie/video.php?file=sinc2dirac.mp4
https://autorobo.ec-nantes.fr/movie/video.php?file=diric2comb.mp4


T28 Chapitre 2

Signaux : les voir autrement

On présente deux types de transformation :

— du temps continu vers le temps discret (vue partielle), pour le traitement numérique ;
— du domaine temporel vers le domaine fréquentiel (autre point de vue), pour l’interprétation, en s’appuyant

sur la notion de sinusoïde complexe.

T29 2.1 Un signal fondamental : la sinusoïde complexe

1-1

0

ℜ

0

0

f t

ℑ

1

-15

La sinusoïde complexe à temps continu est définie par :

t 7−→ A ej (2π f t+ϕ) (2.1)

avec :

— A ∈ R+ l’amplitude,
— ϕ ∈ R la phase initiale,
— f ∈ R la fréquence.

La figure montre 5 répétitions pour f > 0. Y

. Si t est exprimé en seconde, f est exprimé en Hertz (cycle par seconde, tour par seconde).

.Ce signal est périodique, 1
f est la période (en seconde si f est en Hertz).

Si f > 0, le sens de rotation est le sens trigonométrique.
Si f < 0, le sens de rotation est le sens des aiguilles d’une montre.

1-1

0

ℜ

0

0

n

ℑ

1

-150

T30 La sinusoïde complexe à temps discret est définie par :

(A ej (2π λn+ϕ))n∈Z (2.2)

avec :

— A ∈ R+ l’amplitude,
— ϕ ∈ R la phase initiale,
— λ ∈ R la fréquence (normalisée, ou réduite).

Sur la figure, λ = 0.04 cycle/sample. Y

. La fréquence est adimensionnelle, définie modulo 1, 1 on peut l’exprimer en cycle par échantillon (tour par
échantillon, cycle per sample).

. La suite est périodique ssi λ ∈ Q. On prend λ dans ]− 1
2 ,

1
2 ], et on exprime la fraction irréductible : la période

(en sample) est le dénominateur, le nombre de cycles pour la parcourir dans le sens trigonométrique est le
numérateur.

T31 ý Exercice 7. Quelle est la période, et le nombre de cycles pour la parcourir, pour les fréquences ci-dessous ?

λ (cycle/sample) période (sample) nombre de cycles
0.040
0.042
0.958
π/100

1. S’il existe k ∈ Z tel que λ
′
= λ+ k : ej (2π λ

′
n+ϕ)

= e
j (2π λn+ϕ). On prend en général la valeur dans ]− 1

2
, 1
2
].

9

https://autorobo.ec-nantes.fr/movie/video.php?file=sincomp.mp4
https://autorobo.ec-nantes.fr/movie/video.php?file=sincompd.mp4
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T32 2.2 Transformation de Fourier (temps continu)

On a considéré les signaux sous forme d’une représentation temporelle :

x : R −→ C
t 7−→ x(t)

Cependant :

— on distingue les sons graves (basse fréquence) des sons aigus (haute fréquence) ;
— le marin distingue la houle (basse fréquence) du clapot (haute fréquence) ;
— la suspension d’une voiture ne réagit pas de la même manière au pavé (basse fréquence) qu’au grain fin du

macadam (haute fréquence).

Ces exemples montrent l’intérêt d’une décomposition fréquentielle (ou spectrale).

T33 La transformée de Fourier Fccx d’un signal x est une fonction de la forme :

Fccx : R −→ C
f 7−→ Fccx(f)

définie pour tout f par :

Fccx(f) =
∫ +∞

−∞
x(t) e−j 2π f t d t (2.3)

. Si t est homogène à un temps, alors f est homogène à une fréquence.
Fcc transforme une fonction d’un temps continu en une fonction d’une fréquence continue (indice cc).

ª On admet que la transformée de Fourier existe (l’intégrale converge) si le signal est absolument sommable.
L’extension aux signaux sinusoïdaux est possible grâce à la théorie des distributions.

− Connaissant Fccx, on peut reconstruire x par la transformation de Fourier inverse : P1

x(t) =

∫ +∞

−∞
Fccx(f) ej 2π f t d f (2.4)

T34 En faisant apparaître le spectre d’amplitude |Fccx| et le spectre de phase arg(Fccx) :

x(t) =

∫ +∞

−∞
|Fccx(f)| ej [2π f t+arg(Fcc(f))] d f (2.5)

La transformation de Fourier décompose donc un signal x en une somme de
sinusoïdes complexes :





de fréquence f
d’amplitude |Fccx(f)| d f
de phase initiale arg(Fccx(f))

La transformation de Fourier effectue une analyse spectrale.

T35 Pour un signal à valeur réelle, le spectre d’amplitude est pair, le spectre de phase impair. Donc :

x(t) = 2

∫ +∞

0

|Fccx(f)| cos [2π f t+ arg(Fccx(f))] d f (2.6)

La transformation de Fourier décompose donc un signal x à valeur réelle en une somme de cosinus :




de fréquence f ⩾ 0
d’amplitude 2 |Fccx(f)| d f
de phase initiale arg(Fccx(f))

P1.
∫
Fccx(f) e

j 2π f t
d f =

∫ ∫
x(u) e

−j 2π f u
du︸ ︷︷ ︸

Fccx(f)

e
j 2π f t

d f =
∫
x(u)

∫
e
j 2π f (t−u)

d f︸ ︷︷ ︸
δ(t−u)

du = x(t)
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T36 2.3 Transformation de Laplace bilatère

La transformée de Fourier n’existe pas toujours (l’intégrale de la formule (2.3) ne converge pas).
La transformation de Laplace bilatère la généralise, avec des conditions d’application moins restrictives.

− La transformée de Laplace Lx d’un signal x est une fonction de la forme :

Lx : C −→ C
s 7−→ Lx(s)

définie pour tout s ∈ C telle que l’intégrale ci-dessous converge par :

Lx(s) =
∫ +∞

−∞
x(t) e−s t d t (2.7)

− s0 ∈ C est un pôle de la transformée de Laplace de x si lims→s0
Lx(s) = ∞.

Il n’y a aucun pôle dans le domaine de convergence.
La partie réelle d’un pôle peut être +∞ ou −∞.

ℜ

ℑ
T37 Si le domaine de convergence est non vide, c’est une bande verticale, les abscisses

des droites frontières sont les parties réelles de pôles.

Pour un signal causal, c’est un 1
2 -plan droit et il n’y a pas de pôle en +∞. 2

Pour un signal anticausal, c’est un 1
2 -plan gauche et il n’y a pas de pôle en −∞. 3

Si l’axe imaginaire est dans la bande de convergence, le signal a une transformée de Fourier ; pour tout f :

Fccx(f) = Lx(j 2π f) (2.8)

ª Le domaine de convergence peut avoir pour frontière l’axe imaginaire.
Il peut se réduire à l’axe imaginaire.
Le traitement rigoureux nécessite la théorie des distributions.

T38 ý Exercice 8. Soit x et y les signaux paramétrés par la constante complexe α ; pour tout t :

x(t) = e−α t step(t) y(t) = −e−α t step(−t)

a) Calculer leur transformée de Laplace.
b) Admettent-il une transformée de Fourier. Si oui, quelle est son expression ?

− A l’issue de cet exercice, on constate que :

— ces 2 signaux ont la même expression de la transformée de Laplace, mais pas le même domaine de convergence ;
— −α est l’unique pôle de leur transformée de Laplace ;
— la frontière entre leurs domaines de convergence est la droite verticale {s | ℜ(s) = −ℜ(α)} ;
— seul l’un des deux admet une transformée de Fourier (selon le signe de ℜ(α)).

T39 Pour calculer une transformée de Laplace inverse, il faut spécifier le domaine de convergence. 4

ª Pour être une transformée de Laplace, une fonction d’une variable complexe doit être holomorphe.
Elle doit donc être continue, indéfiniment dérivable dans l’intérieur de la bande de convergence.
Par exemple, s 7→ |s| n’est pas une transformée de Laplace.

2. Pour un signal non-causal mais qu’un retard peut rendre causal, il y a un pôle, donc une frontière en +∞.
3. Pour un signal non-anticausal mais qu’une avance peut rendre anticausal, il y a un pôle, donc une frontière en −∞.
4. On choisit σ ∈ R tel que {s | ℜ(s) = σ} soit dans la bande de convergence ; f 7→ Lx(σ + j 2πf) est la transformée de Fourier de

t 7→ x(t)e
−σ t. Par transformée inverse, on obtient, pour tout t : x(t) =

∫+∞
−∞ Lx(σ + j 2πf) e

(σ+j 2πf) t
d f . C’est la formule de

Bromwich-Wagner.
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T40 2.4 Transformation de Fourier (temps discret)

On a considéré les signaux sous forme d’une représentation temporelle :

x = (x[n])n∈Z

Comme pour les signaux à temps continu, une decomposition spectrale est possible.

T41 La transformée de Fourier Fdcx d’un signal x est une fonction de la forme :

Fdcx : R −→ C
λ 7−→ Fdcx(λ)

définie pour tout λ par :

Fdcx(λ) =

+∞∑

n=−∞
x[n] e−j 2π λn (2.9)

. λ est adimensionnel et a une interprétation de fréquence réduite. Fdcx est 1-périodique.
Fdc transforme une suite en une fonction d’une fréquence continue (indice dc).

ª On admet que la transformée de Fourier existe (la série converge) si le signal est absolument sommable.
L’extension aux signaux sinusoïdaux est possible grâce à la théorie des distributions.

− Connaissant Fdcx, on peut reconstruire x par la transformation de Fourier inverse : P2

x[n] =

∫ + 1
2

− 1
2

Fdcx(λ) e
j 2π λn dλ (2.10)

T42 En faisant apparaître le spectre d’amplitude |Fdcx| et le spectre de phase arg(Fdcx) :

x[n] =

∫ + 1
2

− 1
2

|Fdcx(λ)| ej [2π λn+arg(Fdc(λ))] dλ (2.11)

La transformation de Fourier décompose donc un signal x en une somme de sinusoïdes complexes :




de fréquence λ
d’amplitude |Fdcx(λ)| dλ
de phase initiale arg(Fdcx(λ))

− Pour un signal à valeur réelle, le spectre d’amplitude est pair, le spectre de phase impair.

P2.
∫+ 1

2

− 1
2

Fdcx(λ) e
j 2π λn

dλ =
∫+ 1

2

− 1
2

∑
m x[m] e

−j 2π λm︸ ︷︷ ︸
Fdcx(λ)

e
j 2π λn

dλ =
∑

m x[m]
∫+ 1

2

− 1
2

e
j 2π λ (n−m)

dλ︸ ︷︷ ︸
δ[n−m]

= x[n]
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T43 2.5 Transformation en z bilatère

La transformée de Fourier n’existe pas toujours (la série de la formule (2.9) ne converge pas).
La transformation en z la généralise, avec des conditions d’application moins restrictives.

− La transformée en z d’un signal à temps discret x, notée Zx, est une fonction de la forme :

Zx : C −→ C
z 7−→ Zx(z)

définie pour tout z ∈ C telle que la série ci-dessous converge par :

Zx(z) =

+∞∑

n=−∞
x[n] z−n (2.12)

− z0 ∈ C est un pôle de la transformée en z de x si limz→z0
Zx(z) = ∞.

Il n’y a aucun pôle dans le domaine de convergence.
Le module d’un pôle peut être 0 ou +∞.

ℜ

ℑ
T44 Si le domaine de convergence est non-vide, c’est un anneau centré sur 0, les rayons

intérieur et extérieur sont les modules de pôles.

Pour un signal causal, c’est l’extérieur d’un disque et il n’y a pas de pôle infini. 5

Pour un signal anticausal, c’est un disque et 0 n’est pas un pôle. 6

Si le cercle unité 7 est dans l’anneau de convergence, le signal a une transformée de Fourier ; pour tout λ :

Fdcx(λ) = Zx(ej 2π λ) (2.13)

ª Le domaine de convergence peut avoir pour frontière le cercle unité.
Il peut se réduire au cercle unité.
Le traitement rigoureux nécessite la théorie des distributions.

T45 ý Exercice 9. Soit x et y les signaux paramétrés par la constante complexe α ; pour tout n :

x[n] = αn step[n] y[n] = −αn step[−n− 1]

a) Calculer leur transformée en z. Rappel : si β ̸= 1 et n0 ⩽ n1,
∑n1

n=n0
βn = β

n0−β
n1+1

1−β

b) Admettent-il une transformée de Fourier ? Si oui, quelle est son expression ?

− A l’issue de cet exercice, on constate que :

— ces deux signaux ont la même expression de la transformée en z, mais pas le même domaine de convergence ;
— α est l’unique pôle de leur transformée en z ;
— la frontière entre leurs domaines de convergence est le cercle {z | |z| = |α|} ;
— seul l’un des deux admet une transformée de Fourier (selon la valeur de |α|).

− Pour calculer une transformée en z inverse, il faut spécifier le domaine de convergence. 8

5. Pour un signal non-causal mais qu’un retard peut rendre causal, il y a un pôle infini, donc une frontière à l’infini.
6. Pour un signal non-anticausal mais qu’une avance peut rendre anticausal, il y a un pôle en 0.
8. On choisit ρ ∈ R tel que {z | |z| = ρ} soit dans l’anneau de convergence ; λ 7→ Zx(ρ e

j 2π λ
) est la transformée de Fourier de

(x[n] ρ
−n

)n∈Z. Par transformée inverse, on obtient, pour tout n : x[n] =
∫+ 1

2

− 1
2

Zx(ρ e
j 2π λ

) (ρ e
j 2π λ

)
n
dλ
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T46 2.6 Propriétés des transformations

Dans cette section :

— Les démonstrations sont en général fournies en temps continu,
la transposition au temps discret est laissée en exercice ;

— Σx désigne le domaine de convergence de la transformée de Laplace ou en z du signal x ;
— les formules s’entendent pour tout temps t ou n, toute fréquence f ou λ, tout s ou z dans le domaine de

convergence indiqué.

T47 Les propriétés fondamentales sont : la linéarité, l’effet sur la convolution, P3 l’effet sur le produit. P4

Si x et y sont deux signaux à temps continu, a ∈ C.

Linéarité L(x+ y) = Lx+ Ly Σx+y ⊃ Σx ∩ Σy (2.14)
L(a x) = aLx Σax = Σx

Convolution L(x ∗ y) = LxLy Σx∗y ⊃ Σx ∩ Σy (2.15)
Produit Fcc(x y) = Fccx ∗ Fccy (2.16)

Si x et y sont deux signaux à temps discret, a ∈ C.

Linéarité Z(x+ y) = Zx+ Zy Σx+y ⊃ Σx ∩ Σy (2.17)
Z(a x) = aZx Σax = Σx

Convolution Z(x ∗ y) = ZxZy Σx∗y ⊃ Σx ∩ Σy (2.18)

Produit 9 Fdc(x y) = Fdcx⊛ Fdcy (2.19)

T48 Les formules ci-dessous donnent l’effet de la translation temporelle, P5 de la modulation. P6

Si x est un signal à temps continu, t0 ∈ R, s0 ∈ C, f0 ∈ R.

Translation y(t) = x(t− t0) Ly(s) = e−s t0 Lx(s) Σy ⊃ Σx ∩ {s | ℜ(s t0) = −∞} (2.20)

Modulation y(t) = x(t) es0 t Ly(s) = Lx(s− s0) Σy = {s+ s0 | s ∈ Σx}
y(t) = x(t) ej 2π f0 t Fccy(f) = Fccx(f − f0) (2.21)

Si x est un signal à temps discret, n0 ∈ Z, z0 ∈ C, λ0 ∈ R.

Translation y[n] = x[n− n0] Zy(z) = z−n0 Zx(z) Σy ⊃ Σx ∩ {z | zn0 = 0} (2.22)

Modulation y[n] = x[n] zn0 Zy(z) = Zx(z z−1
0 ) Σy = {z z0 | z ∈ Σx}

y[n] = x[n] ej 2π λ0 n Fdcy(λ) = Fdcx(λ− λ0) (2.23)

T49 Les formules ci-dessous donnent l’effet du changement d’échelle ou de l’interpolation. P7

Si x est un signal à temps continu, a ∈ R.

Echelle y(t) = 1
|a| x

(
t
a

)
Ly(s) = Lx(a s) Σy = { s

a | s ∈ Σx}
Fccy(f) = Fccx(a f) (2.24)

Si x est un signal à temps discret, N ∈ Z.

Interpolation x↑N [n] =

{
x
[
n
N

]
si n

N ∈ Z
0 sinon Zx↑N (z) = Zx(zN ) Σx↑N

= {z 1
N | z ∈ Σx}

Fdcx↑N (λ) = Fdcx(Nλ) (2.25)

P3. L(x ∗ y)(s) =
∫+∞
−∞

∫+∞
−∞ x(τ) y(t− τ) d τ︸ ︷︷ ︸

(x∗y)(t)

e
−s t

d t =
∫+∞
−∞ x(τ) e

−s τ ∫+∞
−∞ y(t− τ) e

−s (t−τ)
d t︸ ︷︷ ︸

Ly(s)

d τ = Lx(s)Ly(s)

P4. (Fccx ∗ Fccy)(f) =
∫+∞
−∞ Fccx(g)Fccy(f − g) d g =

∫+∞
−∞

∫+∞
−∞

∫+∞
−∞ x(u) y(t) e

−j 2π g u
e
−j 2π (f−g) t

d t du d g

=
∫+∞
−∞

∫+∞
−∞ x(u) y(t)

∫+∞
−∞ e

−j 2π g (u−t)
d g︸ ︷︷ ︸

δ(u−t)

e
−j 2π f t

d t du =
∫+∞
−∞ y(t)

∫+∞
−∞ x(u) δ(u− t) du︸ ︷︷ ︸

x(t)

e
−j 2π f t

d t

9. Il s’agit de la convolution circulaire pour les fonctions 1-périodiques.
P5. L(t 7→ x(t− t0))(s) =

∫+∞
−∞ x(t− t0) e

−s t
d t =

∫+∞
−∞ x(u) e

−s (u+t0) du = e
−s t0

∫+∞
−∞ x(u) e

−s u
du = e

−s t0 Lx(s)
P6. L(t 7→ x(t) e

s0 t
)(s) =

∫+∞
−∞ x(t) e

s0 t
e
−s t

d t =
∫+∞
−∞ x(t) e

−(s−s0) t d t = Lx(s− s0)

P7. L
(
t 7→ x

(
t
a

))
(s) =

∫+∞
−∞ x

(
t
a

)
e
−s t

d t = |a|
∫+∞
−∞ x(u) e

−a s u
du = |a| Lx(a s)
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T50 Les formules ci-dessous donnent l’effet sur un signal à temps continu de la dérivation, P8 de l’intégration. P9

Dérivation ẋ(t) =
dx

d t
(t) Lẋ(s) = sLx(s) Σẋ ⊃ Σx \ {s | ℜ(s) = ±∞} (2.26)

Int. causale X(t) =

∫ t

−∞
x(τ) d τ LX(s) =

1

s
Lx(s) ΣX ⊃ Σx ∩ {s | ℜ(s) > 0} (2.27)

Int. anticausale X(t) =

∫ t

+∞
x(τ) d τ LX(s) =

1

s
Lx(s) ΣX ⊃ Σx ∩ {s | ℜ(s) < 0} (2.28)

On observe 2 cas particuliers de la translation temporelle d’un signal à temps discret : l’avance d’un pas, le retard
d’un pas.

Avance y[n] = x[n+ 1] Zy(z) = zZx(z) Σy ⊃ Σx \ {z | |z| = +∞} (2.29)

Retard y[n] = x[n− 1] Zy(z) = z−1 Zx(z) Σy ⊃ Σx \ {0} (2.30)

T51 L’énergie d’un signal x est définie par :

∫ +∞

−∞
|x(t)|2 d t

+∞∑

n=−∞
|x[n]|2 (2.31)

− Le théorème de Parseval explique pourquoi f 7→ |Fccx(f)|2 (ou λ 7→ |Fdcx(λ)|2) est appelée densité spectrale
d’énergie, ou spectre d’énergie : P10

∫ +∞

−∞
|x(t)|2 d t =

∫ +∞

−∞
|Fccx(f)|2 d f

+∞∑

n=−∞
|x[n]|2 =

∫ + 1
2

− 1
2

|Fdcx(λ)|2 dλ (2.32)

T52 ý Exercice 10.
a) Calculer la transformée en z de l’impulsion de Kronecker.
b) On considère le signal à temps discret défini par :

x[n] =

{
1 si n ∈ {1, 2, 3}
0 sinon

Calculer sa transformée en z en revenant à la définition de la transformation en z.
c) On considère le signal à temps discret défini par :

y[n] = δ[n− 1] + δ[n− 2] + δ[n− 3]

Calculer sa transformée en z en utilisant les théorèmes.

T53 2.7 Quelques transformées

L’obtention des transformées des impulsions de Dirac et de Kronecker est immédiate :

L δ = 1 Z δ = 1 (2.33)

− La transformée de Fourier des fenêtres rectangulaires à temps continu et à temps discret sont : P11

Fcc rect = sinc Fdc rectN = DN (2.34)

Les formules suivantes s’entendent pour tout temps t ou n, toute fréquence f ou λ, tout s ou z dans le domaine de
convergence indiqué.

P8. Lẋ(s) =
∫+∞
−∞ ẋ(t) e

−s t
d t = [x(t) e

−s t
]
+∞
−∞ + s

∫+∞
−∞ x(t) e

−s t
d t = sLx(s) car limt→±∞ x(t) e

−s t
= 0 pour que Lx(s) existe.

P9. LX(s) =
∫+∞
−∞

∫ t
−∞ x(τ) e

−s t
d τ d t =

∫+∞
−∞

∫+∞
τ x(τ) e

−s t
d t d τ =

∫+∞
−∞ x(τ)

∫+∞
τ e

−s t
d t︸ ︷︷ ︸

1
s
e
−s τ si ℜ(s)>0

d τ

P10. Soit y : t 7→ x
∗
(−t). Fcc(x ∗ y)(f) = Fccx(f)Fccy(f) = Fccx(f) [Fccx(f)]

∗
= |Fccx(f)|

2. Donc, par Fourier inverse, (x ∗ y)(0) =∫+∞
−∞ |Fccx(f)|

2
d f . D’autre part, (x ∗ y)(0) =

∫+∞
−∞ x(t) y(0− t) d t =

∫+∞
−∞ x(t)x

∗
(t) d t =

∫+∞
−∞ |x(t)|2 d t.

P11. Pour tout z ̸= 1 : Z rectN (z) =
∑N−1

n=0 z
−n

= 1−z
−N

1−z
−1 .

Donc, pour tout λ non entier : Fdc rectN (λ) = 1−e
−j 2π λN

1−e
−j 2π λ =

e
−j π λN

(e
j π λN−e

−j π λN
)

e
−j π λ

(e
j π λ−e

−j π λ
)

= e
−j π λ (N−1) sin(πλN)

sin(πλ)
= DN (λ)
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T54 Par récurrence sur k ∈ N∗, on calcule les transformées de Laplace P12 et en z ci-dessous (α ∈ C). P13

Temps continu :

• x(t) = e−α t step(t) Lx(s) = 1
s+α ℜ(s) > −ℜ(α) (2.35)

• x(t) = 1
(k−1)! t

k−1 e−α t step(t) Lx(s) = 1

(s+α)
k ℜ(s) > −ℜ(α) (2.36)

Échelon L step(s) = 1
s ℜ(s) > 0 (2.37)

Rampe L ramp(s) = 1

s
2 ℜ(s) > 0 (2.38)

Temps discret :

• x[n] = αn step[n] Zx(z) = 1

1−α z
−1 |z| > |α| (2.39)

• x[n] =
(
n+k−1
k−1

)
αn step[n] Zx(z) = 1

(1−α z
−1

)
k |z| > |α| (2.40)

Échelon Z step(z) = 1

1−z
−1 |z| > 1 (2.41)

Rampe Z ramp(z) = z
−1

(1−z
−1

)
2 |z| > 1 (2.42)

T55 Pour les signaux suivants, le domaine de convergence de la transformée de Laplace ou en z se réduit à l’axe
imaginaire (Laplace) ou au cercle unité (z) :

— la constante unité, P14

— la sinusoïde complexe, P15

— le peigne de Dirac ou de Kronecker. 10 P16

Temps continu :

Constante 1(t) = 1 Fcc 1(f) = δ(f) (2.43)

Sinusoïde complexe x(t) = ej 2π f0 t Fccx(f) = δ(f − f0) (2.44)

Peigne de Dirac x(t) = 1
T X( t

T ) =
∑

k δ(t− k T ) Fccx(f) = X(T f) (2.45)

Temps discret :

Constante 1[n] = 1 Fdc 1(λ) = X(λ) (2.46)

Sinusoïde complexe x[n] = ej 2π λ0 n Fdcx(λ) = X(λ− λ0) (2.47)
Peigne de Kronecker 1↑N [n] =

∑
k δ[n− kN ] Fdc 1↑N (λ) = X(N λ) (2.48)

T56 ý Exercice 11. Ecrire la transformée de Fourier :
a) de la sinusoïde t 7→ cos(2π f0 t+ ϕ). Y

b) de la sinusoïde (cos(2π λ0 n+ ϕ))n∈Z.
c) du noyau de Dirichlet DN (rappel : DN (θ) =

∑N−1
k=0 ej 2π k θ).

P12. Posons xk(t) =
1

(k−1)!
t
k−1

e
−α t

step(t). En intégrant par parties, Lxk+1(s) =
1

s+α
Lxk(s). Initialisation faite en exercice.

P13. Posons xk[n] =
(n+k−1

k−1

)
α
n
step[n]. On suppose la propriété vraie pour xk. On dérive (2.40) : 1

(1−α z
−1

)
k+1 = − 1

k α
z
2 dZxk

d z
(z).

En reprenant la définition de la transformation en z et l’expression de xk : dZxk
d z

(z) = −
∑+∞

n=0
(n+k)!

n! (k−1)!
α
n+1

z
−n−2. En combinant

ces équations , on fait apparaître naturellement xk+1. La formule (2.40) est vraie également pour xk+1.
P14. C’est une application directe des formulations (1.26) et (1.27) que l’on va réutiliser dans la preuve suivante.
P15. Sinusoïde à temps continu : Fccx(f) =

∫+∞
−∞ e

j 2π f0 t
e
−j 2π f t

d t =
∫+∞
−∞ e

−j 2π (f−f0) t d t = δ(f − f0)

Sinusoïde à temps discret : Fdcx(λ) =
∑

n e
j 2π λ0 n

e
−j 2π λn

=
∑

n e
−j 2π (λ−λ0)n = X(λ− λ0)

10. La transformée du peigne de Dirac T -périodique est une suite d’impulsions de Dirac de poids 1
T

espacées de 1
T

.
La transformée du peigne de Kronecker N -périodique est une suite d’impulsions de Dirac de poids 1

N
espacées de 1

N
.

P16. On utilise l’expression (1.27) du peigne, la transformée de la sinusoïde, et la linéarité de la transformation de Fourier.
Pour le peigne de Kronecker, il faut aussi remarquer que =

∑N−1
k=0 X(λ− k

N
) =

∑+∞
k=−∞ δ(λ− k

N
).

https://autorobo.ec-nantes.fr/movie/video.php?file=tfsinusreel.mp4
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T57 2.8 Échantillonnage

Soit x un signal à temps continu.
On définit une suite croissante d’instants (tn)n∈Z.
Le signal à temps discret xs = (xs[n])n∈Z est définie pour tout n par : xs[n] = x(tn)

Le signal à temps discret est obtenu par échantillonnage (sampling) du signal à temps continu.

Ts

x(t) xs[n]− En général, le pas d’échantillonnage tn − tn−1 est constant.
Cette constante Ts est la période d’échantillonnage.
Son inverse fs =

1
Ts

est la fréquence d’échantillonnage. 11

On suppose de plus que t = 0 est un instant d’échantillonnage ; on obtient donc, pour tout n :

xs[n] = x(nTs) (2.49)

− L’échantillonnage est nécessaire pour le traitement, le stockage et la transmission numériques.

Le choix de la fréquence d’échantillonnage dépend de l’application :

CD 44100 Hz (44100 échantillons/seconde)
Glycémie en continu 0.0033 Hz (1 mesure toutes les 5 minutes)

0 1 2 3 4 5 6 7 8

• • • • • • • • •

t/Ts

T58 Sur l’exemple ci-contre, le signal à temps discret représenté par des disques cor-
respond à l’échantillonnage du signal à temps continu en trait plein.

0 1 2 3 4 5 6 7 8

• • • • • • • • •

t/Ts

. Cet autre signal à temps continu donne le même signal échantillonné !

0 1 2 3 4 5 6 7 8

• • • • • • • • •

t/Ts

. Une information peut être perdue !

T59 Par convention :

— si x présente une discontinuité en n0 Ts, alors xs[n0] prend la valeur après la discontinuité ;
— si x présente une impulsion de poids a en n0 Ts, alors xs[n0] prend la valeur a

Ts
.

On peut donc écrire :
δs =

1
Ts

δ steps = step ramps = Ts ramp (2.50)

L’échantillonnage préserve la dimensionnalité.

T60 ý Exercice 12. Soit l’échelon à temps continu step, retardé d’un temps τ , puis échantillonné à la période Ts. On pose
τ = d Ts − τ0, avec d entier et 0 ⩽ τ0 < Ts.
a) Porter sur le schéma suivant l’échelon à temps continu retardé, puis son échantillonnage.
b) En déduire l’expression du signal à temps discret obtenu, avec l’échelon à temps discret, d, et τ0. Y

τ

τ0

1

0

(d− 2)Ts (d− 1)Ts d Ts (d+ 1)Ts

t

− En reprenant les notations de l’exercice, et en supposant que le bus passe tous les multiples de Ts :

— τ est l’heure d’arrivée de l’usager à l’arrêt de bus ;
— d Ts est l’heure où il monte dans le bus ;
— τ0 est le temps perdu à attendre le bus.

11. La période d’échantillonnage peut s’exprimer en second/sample, la fréquence en sample/second.

https://autorobo.ec-nantes.fr/movie/video.php?file=step-ech.mp4
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T61 2.9 Théorème d’échantillonnage de Shannon

Soit un signal à temps continu x, ne présentant pas d’impulsion.
On l’échantillonne à la période Ts (fréquence d’échantillonnage fs = 1/Ts),
On obtient le signal à temps discret xs ; pour tout n :

xs[n] = x(nTs)

− Connaissant le signal échantillonné xs, est-il possible de reconstruire le signal d’origine x ?
Il est équivalent de se poser la question suivante : connaissant Fdcxs, peut-on reconstruire Fccx ?

T62 Rappelons l’expression de ces deux transformées de Fourier ; pour tout f , et pour tout λ :

Fccx(f) =
∫ +∞

−∞
x(t) e−j 2π f t d t Fdcxs(λ) =

+∞∑

n=−∞
xs[n] e

−j 2π λn

ý Exercice 13. On cherche à établir un lien entre Fccx et Fdcxs.
a) Echantillonner t 7→ x(t) e−j 2π f t à la période Ts.
b) Approcher l’intégrale Fccx(f) par la méthode des rectangles à droite (on suppose que t 7→ x(t) e−j 2π f t vaut,

entre nTs et (n+ 1)Ts, sa valeur échantillonnée à l’instant nTs).

− L’échantillonnage entraîne en général une perte d’information.
Cependant, sous certaines hypothèses, la relation obtenue dans l’exercice n’est pas approchée.

T63 La formule sommatoire de Poisson donne Fdcxs en fonction de Fccx : P17

1
fs

Fdcxs

(
f
fs

)
=

+∞∑

k=−∞
Fccx(f − k fs) (2.51)

La transformée de Fourier du signal échantillonné est, au facteur fs près, la somme de la transformée de Fourier
du signal à temps continu et de ses versions translatées d’un multiple de fs.

. L’échantillonnage temporel entraîne une périodisation spectrale.

− Que se passe-t-il si le signal à temps continu est à bande limitée (la transformée de Fourier est nulle pour
|f | > fmax) ?

T64 si fs > 2 fmax

Spectre du signal continu

fmax−fmax

f

Fccx(f)

Répliques du spectre du signal continu

f

(Fccx(f − k fs))k∈Z

fs
2− fs

2
fs−fs

Spectre du signal échantillonné

f

Ts Fdcx(f Ts)

fs
2− fs

2
fs−fs

Les deux spectres sont identiques sur la bande de
fréquence [− fs

2 ,
fs
2 ].

T65 si fs < 2 fmax

Spectre du signal continu

fmax−fmax

f

Fccx(f)

Répliques du spectre du signal continu

f

(Fccx(f − k fs))k∈Z

fs
2− fs

2
fs−fs

Spectre du signal échantillonné

f

Ts Fdcx(f Ts)

fs
2− fs

2
fs−fs

On observe une déformation.
Ce phénomène est appelé repliement spectral
(spectral folding, spectral aliasing).

T66 On en déduit le théorème de Shannon :

si Fccx(f) = 0 pour tout f ̸∈
[
− fs

2 ,
fs
2

]

alors Fccx(f) = 1
fs

Fdcxs

(
f
fs

)
pour tout f ∈

[
− fs

2 ,
fs
2

] (2.52)

P17. Soit X défini par X(t) = x(t) X(fs t). Alors :
FccX = Fccx ∗ Fcc(t 7→ X(t fs)) = FccX ∗ (f 7→ Ts X(f Ts)) =

∑
k FccX(f) ∗ (f 7→ δ(f − k fs)) = (f 7→

∑
k Fccx(f − k fs)).

Mais X s’écrit aussi X(t) = Ts
∑

n xs[n] δ(t− nTs). Donc :
fs FccX(f) =

∫ ∑
n xs[n] δ(t− nTs) e

−j 2π f t
d t =

∑
n xs[n]

∫
δ(t− nTs) e

−j 2π f t
d t =

∑
n xs[n] e

−j 2π f nTs = Fdcxs(f Ts).
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− La demi-fréquence d’échantillonnage fs
2 est appelée fréquence de Shannon, ou fréquence de Nyquist.

T67 Considérons une sinusoïde réelle de 70 Hz, échantillonnée à 65 Hz.
La condition de Shannon n’est donc pas vérifiée.
Le signal échantillonné semble être une sinusoïde de fréquence 5 Hz.

0 50 100 150 200 250 300

•

•

•
• •

•

•

•

•
• •

•

•

•

•

•
• •

•

•

Temps (ms)

Le repliement spectral duplique le pic en 70 Hz à la fréquence 5 Hz.

7065

f(Hz)

|Fccx(f)|

5 7065

f(Hz)

Ts |Fdcx(f Ts)|

Il n’y a pas repliement s’il y a au moins deux échantillons par cycle de la sinusoïde à temps continu. Y Y

T68 Le repliement spectral explique pourquoi, au cinéma, (échantillonnage à 24 images par seconde), la roue du véhicule
filmé semble tourner lentement, à l’envers, voire s’arrêter.

Il peut être recherché, comme, par exemple, dans le calage du point d’allumage d’un moteur à explosion par effet
stroboscopique.

.Mais, en général, on cherche à l’éviter. On utilise un filtre anti-repliement, filtre passe-bas qui ôte les hautes
fréquences avant échantillonnage.
Les phénomènes hautes fréquences sont perdus, mais pas interprétés comme des phénomènes basse fréquence.

T69 Si la condition de Shannon est vérifiée, on obtient, dans le domaine temporel, la formule d’interpolation de
Whittaker–Shannon : P18

x(t) =
∑

n∈Z
xs[n] sinc(

t−nTs
Ts

) (2.53)

.On vient d’écrire le théorème de Shannon lors d’un échantillonnage.
Il existe un théorème analogue lors d’une décimation, disponible en annexe (page 37).

ý Exercice 14. On échantillonne une sinusoïde réelle à la fréquence 1000 Hz. Quelle fréquence voit-on lorsque la
fréquence de la sinusoïde à temps continu est 100 Hz, 900 Hz, 1000 Hz, 1100 Hz ?

P18. La formule (2.52) s’écrit, avec X(t) = x(t) X(fs t) : Fccx(f) = 1/fs Fdcxs(f/fs)︸ ︷︷ ︸
FccX(f)

rect(f/fs)︸ ︷︷ ︸
Fcc sinc( f

fs
)

d’où le résultat par convolution.

https://autorobo.ec-nantes.fr/movie/video.php?file=sinusech2.mp4
https://autorobo.ec-nantes.fr/movie/video.php?file=sinusechson.mp4
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T70 2.10 Blocage

Etant donné un signal à temps discret x, comment obtenir un signal à temps continu ?

On suppose l’intervalle de temps entre deux instants consécutifs égal à Ts.

On utilise un bloqueur. On note :

— ximp le signal obtenu par blocage impulsionnel ;
— xzoh le signal obtenu par blocage d’ordre 0 (Zero Order Hold, zoh) ;
— xfoh le signal obtenu par blocage d’ordre 1 (First Order Hold, foh).

t/Ts

imp
x[n] ximp(t)

T71 Bloqueur impulsionnel
ximp est nul sauf aux instants nTs, n ∈ Z, où il présente une impulsion :

ximp(t) =

+∞∑

n=−∞
x[n] δ( t−nTs

Ts
) (2.54)

= Ts

+∞∑

n=−∞
x[n] δ(t− nTs) (2.55)

C’est un outil mathématique, irréalisable physiquement.La transformée en z de x
n’est autre que la transformée de Laplace de ximp ; pour tout s : P19

Lximp(s) = Ts Zx(es Ts) (2.56)

t/Ts

zoh
x[n] xzoh(t)

T72 Bloqueur d’ordre 0
xzoh est bloqué à la valeur x[n] entre les instants nTs et (n+ 1)Ts.

xzoh(t) =

+∞∑

n=−∞
x[n] rect( t−nTs

Ts
− 1

2 ) (2.57)

=

+∞∑

n=−∞
(x[n]− x[n− 1]) step(t− nTs) (2.58)

Le bloqueur d’ordre 0 correspond à un fonctionnement réaliste.

En effet, l’échantillonneur-bloqueur est un composant électronique, piloté par
une horloge de période Ts.

Conceptuellement, c’est un échantillonneur suivi d’un bloqueur d’ordre 0, qu’on
pourra séparer dans les schémas fonctionnels de la partie « Systèmes ».

t/Ts

foh
x[n] xfoh(t)

T73 Bloqueur d’ordre 1
xfoh est obtenu par interpolation linéaire.

xfoh(t) =

+∞∑

n=−∞
x[n] tri( t−nTs

Ts
) (2.59)

=
1

Ts

+∞∑

n=−∞
(x[n+ 1]− 2x[n] + x[n− 1]) ramp(t− nTs) (2.60)

. Le bloqueur d’ordre 1 connaît le futur !

T74 Plus généralement, un bloqueur est fondé sur une fonction ϕ telle que :

— le signal bloqué xh est une combinaison linéaire de ϕ et de ses versions décalées d’un multiple de Ts ;
— l’échantillonnage à Ts de xh redonne le signal d’origine x.

ϕ = step donne le bloqueur d’ordre 0, ϕ = ramp donne le bloqueur d’ordre 1, voir annexe (page 38).

.Un bloqueur suivi d’un échantillonneur redonne le signal à temps discret d’entrée.
Un échantillonneur suivi d’un bloqueur déforme le signal à temps continu d’entrée.

Le blocage préserve la dimensionnalité.

P19. Lximp(s) =
∫+∞
−∞ Ts

∑
n x[n] δ(t− nTs)︸ ︷︷ ︸

ximp(t)

e
−s t

d t = Ts
∑

n x[n]
∫+∞
−∞ δ(t− nTs) e

−s t︸ ︷︷ ︸
e
−s n Ts

d t = Ts
∑

n x[n] (e
s Ts )

−n︸ ︷︷ ︸
Zx(e

s Ts )
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T75 2.11 Séries de Fourier, transformation de Fourier discrète

Soit x un signal à temps continu, T -périodique.

Son développement en série de Fourier est une suite définie pour tout k ∈ Z par :

Fcdx[k] =
∫ T

0

x(t) e−j 2π k
T t d t (2.61)

− Inversement, on reconstruit le signal, pour tout t ∈ R, par : P20

x(t) =
1

T

+∞∑

k=−∞
Fcdx[k] ej 2π

k
T t (2.62)

Le signal est décomposé en une somme de sinusoïdes complexes ( 1
T Fcdx[0] est la composante continue).

− Fcd transforme un signal à temps continu en une suite (indice cd).
La transformée de Fourier est constituée de raies spectrales localisées aux fréquences multiples de 1

T . 12

T76 Soit x un signal à temps discret, N -périodique.

Sa transformée de Fourier discrète est une suite, N -périodique, définie pour tout k ∈ Z par :

Fddx[k] =

N−1∑

n=0

x[n] e−j 2π k n
N (2.63)

− Inversement, on reconstruit le signal, pour tout n ∈ Z, par : P21

x[n] =
1

N

N−1∑

k=0

Fddx[k] e
j 2π k n

N (2.64)

Le signal est décomposé en une somme de N sinusoïdes complexes ( 1
N Fddx[0] est la composante continue).

− Fdd transforme une suite en une suite (indice dd).
La transformée de Fourier est constituée de raies spectrales localisées aux fréquences réduites multiples de 1

N . 13

− Pour calculer une transformée de Fourier discrète, on utilise un algorithme de transformée de Fourier rapide
(Fast Fourier Transform, FFT), particulièrement efficace quand N est une puissance de 2.

P20. 1
T

∑+∞
k=−∞

∫ T
0 x(u) e

−j 2π k
T

u
du︸ ︷︷ ︸

Fcdx[k]

e
j 2π k

T
t
=

∫ T
0 x(u) 1

T

∑+∞
k=−∞ e

j 2π k
T

(t−u)︸ ︷︷ ︸
X

(
t−u
T

) du = x ⊛
[
τ 7→ 1

T
X

(
τ
T

)]︸ ︷︷ ︸
élément neutre

(t) = x(t)

12. Fccx(f) = 1
T

∑+∞
k=−∞ Fcdx[k] δ(f − k

T
)

P21. 1
N

∑N−1
k=0

∑N−1
m=0 x[m] e

−j 2π k m
N︸ ︷︷ ︸

Fddx[k]

e
j 2π k n

N =
∑N−1

m=0 x[m] 1
N

∑N−1
k=0 e

j 2π
k (n−m)

N︸ ︷︷ ︸
1↑N [n−m]

= (x ⊛ 1↑N )[n] = x[n]

13. Fdcx(λ) =
1
N

∑N−1
k=0 Fddx[k] X(λ− k

N
)
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T77 2.12 L’analyse de Fourier en pratique

On ne peut traiter numériquement un signal x à temps continu ou de durée infinie : Fccx ou Fdcx ne sont pas
calculables. Donc, en général, le traitement numérique nécessite :

échantillonnage, on se ramène d’une Fcc à une Fdc par le changement de variable (2.52), 14

troncature temporelle, une Fdc est approchée par une somme finie, on retrouve le calcul d’une Fdd.

On en verra les effets en travaux dirigés.

T78 A titre d’exemple, la figure ci-contre représente le coefficient de marnage de la marée enregistré pendant un an, et
son analyse de Fourier. Le temps entre deux marées est approximativement de 12 heures et 25 minutes. 15
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On observe des pics explicables par des connaissances astronomiques (phénomènes se répétant tous les 14 ou 28
jours), ainsi que des lobes que nous expliquerons en travaux dirigés.

14. Fccx(f) = 1
fs

Fdcxs

(
f
fs

)
pour tout f ∈

[
− fs

2
,
fs
2

]
, on suppose que la condition de Shannon est vérifiée.

15. Ce coefficient adimensionnel, utilisé en France, ne dépend pas du lieu géographique. On le multiplie par un facteur dépendant du
lieu géographique pour obtenir le marnage en ce lieu. Il dépend de la marée haute, il est donc à temps discret.



T79 Chapitre 3

Systèmes LTI : relier deux signaux

T80 3.1 Généralités

Système
à temps continu

u(t) y(t)

Système
à temps discret

u[n] y[n]

Un système consiste en une relation de cause à effet entre un lot de
signaux d’entrée et un lot de signaux de sortie.

Lorsqu’on se lave les mains, on utilise un système à 2 entrées (positions
angulaires des 2 robinets) et 2 sorties (débit et température de l’eau).

Les entrées sont aussi appelées commandes, ou excitations.
Les sorties sont aussi appelées mesures, ou réponses.

On parle de système à temps continu ou à temps discret, suivant les
signaux d’entrée-sortie.

− Dans ce cours, on se limite aux systèmes mono-entrée mono-sortie.
Soit S un système :

— en général, l’excitation est notée u, la réponse est notée y ;
— on note provisoirement la relation de cause à effet liant la réponse à l’excitation y = S(u).

T81 Dans la table ci-dessous, y(t) désigne la réponse à l’instant t. 1

Si y(t) ne dépend jamais de le système est sinon, il est
{u(τ) | τ ̸= t} statique ou sans mémoire dynamique
{u(τ) | τ = t} (présent) sans transmission directe à transmission directe
{u(τ) | τ > t} (futur) causal non causal
{u(τ) | τ < t} (passé) anticausal non anticausal

− Un système est dit stable si, son entrée étant bornée, sa sortie reste bornée.

T82 Un système peut vérifier les propriétés suivantes (u et u′ sont 2 signaux d’excitation quelconques) :

Superposition, ou additivité S(u+ u′) = S(u) + S(u′)
Homogénéïté ∀a ∈ C, S(a u) = aS(u)
Linéarité superposition et homogénéïté

Invariance temporelle si y = S(u) alors

{
∀τ ∈ R, (t 7→ y(t− τ)) = S(t 7→ u(t− τ))

∀k ∈ Z, (y[n− k])n = S((u[n− k])n)

− Un système linéaire temporellement invariant est dit LTI.

. L’appellation « système LTI » est trompeuse.
Il vaudrait mieux dire « système représenté par un modèle LTI ».
Tout modèle mathématique est une approximation de la réalité physique.

1. Et pas la fonction t 7→ y(t).

23
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T83 Soit un système LTI de réponse impulsionnelle h = S(δ).
On calcule la réponse à n’importe quelle entrée par convolution : P1

S(u) = h ∗ u (3.1)

Donc, un système LTI est complètement caractérisé par sa réponse impulsionnelle S(δ), réponse à l’impulsion de
Dirac ou de Kronecker.

− Le système est :

— causal ssi h est causale ; 2 P2

— sans transmission directe ssi h n’a pas d’impulsion en t = 0 (temps continu : h(0) fini ; temps discret :
h[0] = 0) ;

— stable ssi h est absolument sommable (c’est-à-dire si h admet une transformée de Fourier). P3

T84 ý Exercice 15. Le prédicteur à un coup est un système a temps discret qui cherche à prédire à l’instant n la valeur
qu’aura l’excitation à l’instant n + 1 par extrapolation linéaire : les points (n − 1, u[n − 1]), (n, u[n]), (n + 1, y[n])
sont alignés.
a) Ecrire la récurrence liant y[n] à u[n] et u[n− 1].
b) En déduire la réponse impulsionnelle.
c) Vérifier la cohérence avec la convolution.
d) Causalité, transmission directe, stabilité.

P1. Pour un système à temps continu (démonstration en temps discret tout à fait analogue) :

Par définition : t 7−→ h(t) est la réponse à t 7−→ δ(t)
Par invariance temporelle, pour tout τ : t 7−→ h(t− τ) est la réponse à t 7−→ δ(t− τ)
Par homogénéité, pour tout τ et tout signal u : t 7−→ u(τ)h(t− τ) d τ est la réponse à t 7−→ u(τ) δ(t− τ) d τ

Par superposition (somme sur τ), pour tout signal u : t 7−→
∫+∞
−∞ u(τ)h(t− τ) d τ︸ ︷︷ ︸

h∗u(t)

est la réponse à t 7−→
∫+∞
−∞ u(τ) δ(t− τ) d τ︸ ︷︷ ︸

u(t)2. En discret : ∀n < 0, h[n] = 0. En continu : ∀t < 0, h(t) = 0, et pas de dérivée de l’impulsion en t = 0.
P2. En discret, la démonstration est évidente. En continu, il s’agit d’une justification intuitive, plus que d’une démonstration. S’il

existe t < 0 tel que h(t) ̸= 0, alors la réponse impulsionnelle devance l’excitation, le système n’est donc pas causal. Si h(t) = 0

pour t < 0 et h admet une dérivée première de l’impulsion de poids a en 0, y(t) =
∫ t−
−∞ u(τ)h(t − τ) d τ + a u̇(t) ; le poids de

l’impulsion en t est a (u(t+) − u(t−)) , le système n’est donc pas causal. Réciproquement, si h est causale avec une impulsion
de Dirac de poids a en 0, y(t) =

∫ t−
−∞ u(τ)h(t − τ) d τ + a u(t). Le système est donc causal. Pour que le système ne soit pas à

transmission directe, il faut et il suffit que a = 0.
P3. Par l’inégalité triangulaire : |y(t)| = |

∫+∞
−∞ u(τ)h(t− τ) d τ | ⩽

∫+∞
−∞ |u(τ)| |h(t− τ)| d τ ⩽ maxt |u(t)|

∫+∞
−∞ |h(τ)| d τ . Donc, si u

est bornée, il suffit que
∫+∞
−∞ |h(τ)| d τ soit finie pour que y soit bornée. Pour le signal borné u(t) =

h
∗
(−t)

|h(−t)| si h(−t) ̸= 0 (0 sinon),

y(0) =
∫+∞
−∞ |h(τ)| d τ ; la condition est donc nécessaire.
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T85 3.2 Représentation par transfert

Lh(s)
u(t) y(t)

Zh(z)
u[n] y[n]

− La fonction de transfert, ou transmittance, ou plus simplement le trans-
fert, d’un système LTI est la transformée de Laplace (ou en z) de sa réponse
impulsionnelle.

Comme ces transformées convertissent la convolution en produit, pour tout s
(ou z) dans l’intersection des domaines de convergence de Lh et Lu (ou Zh et
Zu) :

Ly(s) = Lh(s)Lu(s) Zy(z) = Zh(z)Zu(z) (3.2)

− Les pôles du système sont les valeurs de s (ou z) tels que Lh(s) = ∞ (ou Zh(z) = ∞).
Les zéros du système sont les valeurs de s (ou z) tels que Lh(s) = 0 (ou Zh(z) = 0).

− La multiplicité d’un pôle s0 est un nombre entier m tel que lims→s0
(s− s0)

m Lh(s) est fini non-nul. 3

T86 En général, plusieurs systèmes ont la même expression du transfert ;
il faut spécifier le domaine de convergence. 4

Parmi ces systèmes :

— au plus un est causal,
— au plus un est anticausal,
— au plus un est stable.

Si on se fixe un de ces contextes, par exemple les systèmes causaux, l’ambiguïté est levée.

− On montre qu’un système causal est stable ssi les pôles :

— sont à partie réelle négative pour un système à temps continu,
— sont de module inférieur à 1 pour un système à temps discret.

ª La difficulté mathématique réside dans le cas où des pôles sont sur l’axe imaginaire (ou le cercle unité).
On peut étendre la notion de stabilité au cas où de tels pôles existent, mais sont de multiplicité 1.
La sortie d’un tel système causal, dont l’excitation revient définitivement à 0, ne diverge pas.
C’est la stabilité au sens large.

T87 ý Exercice 16. On rappelle que t 7→
∫ t

a
u(τ) d τ est la primitive de u qui s’annule en a.

L’intégrateur causal est le système tel que y(t) =
∫ t

−∞ u(τ) d τ .

L’intégrateur anticausal est le système tel que y(t) =
∫ t

+∞ u(τ) d τ .
a) Pour ces 2 systèmes, quelle est l’équation différentielle liant u et y ?
b) Pour ces 2 systèmes, quelle est la réponse impulsionnelle ?
c) Pour ces 2 systèmes, quel est le transfert ?

T88 ý Exercice 17. On s’intéresse uniquement à l’intégrateur causal.
a) Par analyse de la réponse à l’échelon, le système est-il stable ?
b) Si l’entrée revient définitivement à 0, que fait la sortie ? Le système est-il stable au sens large ?
c) Mêmes questions par l’analyse des pôles.

T89 ý Exercice 18. On s’intéresse maintenant au double intégrateur causal.
a) Quel est le transfert ?
b) Par analyse de la réponse à une porte rectangulaire, le système est-il stable au sens large ?
c) Même question par l’analyse des pôles.

3. Le transfert peut s’écrire G(s)

(s−s0)
m avec G(s0) fini non-nul.

4. On rappelle que ce domaine est délimité par les pôles, et qu’il n’y a pas de pôle à l’intérieur.
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T90 3.3 Du transfert à la réponse fréquentielle

La réponse harmonique (ou fréquentielle), ou la fonction de transfert isochrone d’un système LTI stable
est la transformée de Fourier de la réponse impulsionnelle.

f 7→ Fcch(f) = Lh(j 2π f) λ 7→ Fdch(λ) = Zh(ej 2π λ) (3.3)

− Si on écrit Fcch(f) = G(f) ej Φ(f) :

— f 7→ G(f) est le gain,
— f 7→ Φ(f) est la phase,

— f 7→ −Φ(f)
2π f est le retard de phase. 5

− La réponse à une sinusoïde complexe u de fréquence f0 est y = Fcch(f0)u, soit une sinusoïde complexe de même
fréquence, l’amplitude est multipliée par G(f0), la phase est augmentée de Φ(f0) : P4

si u(t) = A ej (2π f0 t+ϕ)

alors y(t) = G(f0)A ej (2π f0 t+ϕ+Φ(f0))
(3.4)

.Un système à phase nulle, donc sans retard, est tel que h(−t) = h∗(t). Il est statique ou non causal.

T91 ý Exercice 19. On rappelle que la transformée de Fourier d’un signal à valeur réelle est de module pair, phase impaire.
Soit un système LTI stable, à réponse impulsionnelle h à valeur réelle. On pose Fcch(f) = G(f) ej Φ(f).
Que vaut la réponse à t 7→ A cos(2π f0 t+ ϕ) ?

− Soit un système LTI à temps continu, causal, stable, à réponse impulsionnelle à valeur réelle.
Sa réponse fréquentielle est représentée dans le plan de Bode (page 40) : (G(f))dB et Φ(f) en fonction de f dans
un plan semilog.
En échelle dB, on choisit une grandeur de référence Gref pour définir :

GdB = 20 log10
G

Gref

− Le plan de Bode de systèmes élémentaires (1er ordre, 2e ordre) est disponible en annexe (page 40).

R

Cu(t) y(t)

i(t)
T92 Le système du 1er ordre a un transfert de la forme : Y

Lh(s) = K

1 + s T
avec

{
K le gain statique
T > 0 la constante de temps

fc =
1

2π T est la fréquence de coupure à -3 dB.

k c
m

u(t)
y(t)

− Le système du 2e ordre a un transfert de la forme : Y

Lh(s) = K

1 + 2 ζ s
ωn

+ s
2

ω
2
n

avec





K le gain statique
ζ le coeff. d’amortissement
ωn la pulsation naturelle

Système mécanique ci-contre : K = 1, ωn =
√

k
m , ζ = c

2
√
km

.

Si ζ <
√
2
2 , le gain a un maximum à la fréquence de résonance.

ý Exercice 20. Pour le quadripôle RC ci-dessus, les lois de l’électricité mène à l’équation différentielle y +RC ẏ = u.
Par la linéarité de la transformée de Laplace et le théorème de la dérivée, obtient-on un transfert du 1er ordre ? Si
oui, que valent le gain statique et la constante de temps ?

5. Voir retard de phase et retard de groupe en annexe (page 39).
P4. La transformée de Fourier de u s’écrit : Fccu(f) = a e

j ϕ
δ(f − f0). La transformée de Fourier de la réponse y est alors : Fccy(f) =

Fcch(f)Fccu(f) = aFcch(f) e
j ϕ

δ(f − f0) = aFcch(f0) e
j ϕ

δ(f − f0). Par transformée inverse, on obtient le résultat.

https://autorobo.ec-nantes.fr/movie/video.php?file=rf1.mp4
https://autorobo.ec-nantes.fr/movie/video.php?file=rf2.mp4
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T93 3.4 En pratique

Comment obtenir le transfert d’un système physique ?

Par des lois de la physique qui lient y à u.
On suppose que y et u ont une transformée de Laplace ; si le rapport Ly

Lu est indépendant du choix de u, alors
le système est LTI et ce rapport est le transfert.

Dans l’exercice précédent, on a utilisé les lois de l’électricité et le théorème de la dérivée.

Le retard τ de la température d’un fluide à la sortie d’une conduite par rapport à la température à l’entrée
correspond à l’équation y(t) = u(t− τ), le théorème de la translation temporelle mène au transfert s 7→ e−s τ .

Par intuition, au vu des signaux, on conclut qu’un modèle LTI convient et on propose une structure de transfert.

− Si les signaux d’entrée-sortie sont échantillonnés, on peut obtenir un transfert en temps discret équivalent.

− Si les paramètres sont inconnus, ils doivent être estimés à partir de signaux d’entrée-sortie : c’est l’identification
paramétrique.

T94 Inversement, la synthèse consiste :

1. à déterminer un transfert satisfaisant un cahier des charges, à temps continu (système analogique), ou discret
(système numérique) ;

2. puis à réaliser un système ayant ce transfert, sur un composant dédié (électronique, mécanique, pneuma-
tique. . .), ou sur un calculateur analogique (câblage de potentiomètres, condensateurs ajustables, somma-
teurs, intégrateurs. . .) ou numérique (programmation d’ordinateur avec cartes d’entrée-sortie, de micro-
contrôleur. . .).

T95 En traitement du signal, la synthèse de filtre fournit un système causal, la synthèse de lisseur fournit un
système non causal.

Typiquement, la réponse fréquentielle doit satisfaire un gabarit passe-bas, passe-haut, passe-bande, coupe-bande. . .
Passe-bas

|F c
c
h
(f

)|

Passe-haut

Passe-bande

f

|F c
c
h
(f

)|

Coupe-bande

f

Pour effectuer un lissage, il y a nécessairement stockage de données 6, et le lisseur est décomposé en un système
causal et un système anticausal :

— en série : h = hcausal ∗ hanticausal,
— en parallèle : h = hcausal + hanticausal.

T96 En automatique, on élabore une loi de commande nécessairement causale, telle que la sortie du système piloté
suive une trajectoire désirée, et on l’implante sur un correcteur (ou régulateur).

Correcteur Système
ydésiré u y

ý Exercice 21.
a) Lors d’un échantillonnage ou d’une décimation, le filtre destiné à éviter le repliement spectral est-il passe-bas,

passe-haut, passe-bande, coupe-bande ?
b) Lors d’un échantillonnage, ce filtre est-il numérique ou analogique ?
c) Lors d’une décimation, ce filtre est-il numérique ou analogique ?
d) Cette année, la mode est-elle au calculateur analogique ou au calculateur numérique ?

6. Cylindre phonographique (1877), disque (1887), micro-sillon (1945), bande magnétique (1928) en stockage analogique ; disquette
(1967), disque dur (1956), mémoire flash (1988), mémoire vive en numérique.
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T97 3.5 Quelques transferts

Dans la table ci-dessous, les transferts ne peuvent représenter qu’un seul système.
La translation temporelle est causale si τ > 0 ou d > 0 (retard), anticausale si τ < 0 ou d < 0 (avance).
Le gain pur, système statique, est causal et anticausal.

Equation Transfert Rép. impulsionnelle Stable
Temps continu

Translation y(t) = u(t− τ) e−s τ δ(t− τ) oui
Gain pur y(t) = K u(t) K K δ(t) oui

Temps discret
Translation y[n] = u[n− d] z−d δ[n− d] oui
Gain pur y[n] = K u[n] K K δ[n] oui

T98 Dans la table ci-dessous, les équations et transferts de l’intégrateur ou du sommateur, du système du 1er ordre,
de leurs généralisations à pôle multiple, peuvent représenter un système causal ou anticausal. Mais la réponse
impulsionnelle, le domaine de convergence, la stabilité sont donnés dans le cas causal.

Equation Transfert Rép. imp. Stable
Temps continu

Intégrateur ẏ(t) = u(t) 1
s ℜ(s) > 0 step(t) non†

1er ordre ẏ(t) + α y(t) = u(t) 1
s+α ℜ(s) > −ℜ(α) e−α t step(t) ℜ(α) > 0‡

Integ. multiple d
k
y

d t
k (t) = u(t) 1

s
k ℜ(s) > 0 t

k−1

(k−1)! step(t) non

Généralisation 1

(s+α)
k ℜ(s) > −ℜ(α) t

k−1

(k−1)! e
−α t step(t) ℜ(α) > 0

Temps discret
Sommateur y[n+ 1]− y[n] = u[n] z

−1

1−z
−1 |z| > 1 step[n− 1] non†

1er ordre y[n+ 1]− α y[n] = u[n] z
−1

1−α z
−1 |z| > |α| αn−1 step[n− 1] |α| < 1§

Somm. mult. z
−k

(1−z
−1

)
k |z| > 1 non

Généralisation z
−k

(1−α z
−1

)
k |z| > |α| |α| < 1

†Stable au sens large ‡Stable au sens large si ℜ(α) = 0
§Stable au sens large si |α| = 1

T99 La solution de l’équation régissant l’intégrateur causal ou le sommateur causal est : 7

y(t) =

∫ t

−∞
u(τ) d τ y[n] =

n−1∑

k=−∞
u[k] (3.5)

− La table pour les systèmes anticausaux est obtenue :

— en conservant l’expression de l’équation temporelle,
— en conservant l’expression du transfert,
— en changeant le sens de l’inégalité dans le domaine de convergence et la condition de stabilité,
— en remplaçant step(t) par − step(−t) dans la réponse impulsionnelle (temps continu),
— en remplaçant step[n− 1] par − step[−n] dans la réponse impulsionnelle (temps discret).

La solution de l’équation régissant l’intégrateur anticausal ou le sommateur anticausal est :

y(t) =

∫ t

+∞
u(τ) d τ = −

∫ +∞

t

u(τ) d τ y[n] = −
+∞∑

k=n

u[k] (3.6)

T100 Le dérivateur mérite un examen particulier :

— l’équation temporelle est y(t) = u̇(t),
— le transfert est s 7→ s,
— la réponse impulsionnelle est le doublet δ̇.

Il n’est ni causal, ni anticausal.

Ceci se généralise au dérivateur multiple, de réponse impulsionnelle d
k
δ

d t
k , où k ⩾ 1, de transfert s 7→ sk.

7. Intég., som. mult. : y(t) =
∫ t
−∞

∫ τ1
−∞ . . .

∫ τk−1
−∞ u(τk) d τk . . .d τ1, y[n] =

∑n
d1=−∞

∑d1
d2=−∞ . . .

∑dk−1

dk=−∞ u[dk].
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T101 Un système différentiel (respectivement système récurrent) est un système à temps continu (respectivement à
temps discret) tel que la réponse y et l’excitation u vérifient l’équation différentielle (respectivement aux différences)
linéaire à coefficients constants suivante (aN et bM ne sont pas tous deux nuls) :

bM u(t) +

M−1∑

i=1

bM−i
d
i
u

d t
i (t) + b0

d
M

u

d t
M (t) = aN y(t) +

N−1∑

i=1

aN−i
d
i
y

d t
i (t) +

d
N

y

d t
N (t)

bM u[n] +

M−1∑

i=1

bM−i u[n+ i] + b0 u[n+M ] = aN y[n] +

N−1∑

i=1

aN−i y[n+ i] + y[n+N ]

− Par le théorème de la dérivée en continu (du retard en discret), son transfert est défini pour tout s ou z dans le
domaine de convergence par une fraction rationnelle :

Lh(s) = bM + bM−1 s+ bM−2 s
2 + · · ·+ b1 s

M−1 + b0 s
M

aN + aN−1 s+ aN−2 s
2 + · · ·+ a1 s

N−1 + sN

Zh(z) =
bM + bM−1 z + bM−2 z

2 + · · ·+ b1 z
M−1 + b0 z

M

aN + aN−1 z + aN−2 z
2 + · · ·+ a1 z

N−1 + zN

T102 ý Exercice 22. Ecrire l’équation différentielle (ou récurrente) et le transfert pour N = 2, M = 1.

− Pour un système causal : P5

— nécessairement, N ⩾ M ; 8 avec le degré relatif d = N −M :

— en temps continu, une entrée finie n’a d’effet immédiat que sur les dérivées au moins de de la sortie ;
— en temps discret, l’entrée à l’instant n n’a d’effet sur la sortie qu’à partir de l’instant n+ d ;

— il y a transmission directe ssi N = M ;
— il y a stabilité ssi les pôles

— sont à partie réelle négative pour un système à temps continu,
— sont de module inférieur à 1 pour un système à temps discret.

T103 3.6 Du transfert à la réponse indicielle (systèmes causaux)

La réponse impulsionnelle est un outil mathématique qu’on peut rarement obtenir sur un système physique.

− On analyse le comportement d’un système causal par la réponse indicielle.

.Ne pas confondre :
— la réponse impulsionnelle, réponse à l’impulsion de Dirac ou de Kronecker S(δ) = h,
— et la réponse indicielle, réponse à l’échelon S(step) = h ∗ step.

ý Exercice 23. Exprimer la réponse indicielle du système du 1er ordre, de transfert K
1+s T (T > 0).

− La réponse indicielle du système du 2e ordre, de transfert K

1+2 ζ s
ωn

+ s
2

ω
2
n

, est disponible en annexe (page 41).

Si ζ < 1, cette réponse est pseudo-périodique et présente un maximum localisé au temps π

ωn

√
1−ζ

2
. Y

T104 Soit un système à temps continu, causal, avec tous les pôles non nuls stables.

— Si 0 est un zéro, la réponse indicielle tend vers 0.
— Sinon, la classe c est la multiplicité du pôle 0. On peut écrire le transfert sous la forme :

Lh(s) = K
s
c G(s) avec G(0) = 1 (3.7)

— La dérivée ce de la réponse indicielle tend vers la constante K.

P5. Soit N
′ ⩽ N le nombre de pôles distincts, {Pk | 1 ⩽ k ⩽ N

′} l’ensemble des pôles, et soit mk la multiplicité du pôle Pk. La
décomposition en éléments simples d’une fraction rationnelle permet d’écrire celle-ci sous la forme suivante :

Lh(s) = α0 + α1 s+ · · ·+ αM−N s
M−N︸ ︷︷ ︸

si M ⩾ N

+
∑N

′

k=1

(
βk,1

s−Pk
+ · · ·+

βk,mk

(s−Pk)
mk

)

Le système se décompose donc en une somme de systèmes plus simples : dérivateur en continu (avance en discret), gain pur si
M ⩾ N , intégrateur en continu (retard en discret) si 0 est un pôle, 1

er ordre ou sa généralisation à pôle multiple. Un système
physique étant causal, il ne peut comprendre de dérivateur ou d’avance, ce qui impose que M ⩽ N . Pour un système causal,
chaque sous-système doit être causal. Pour un système causal stable, chaque sous-système doit être causal stable.

8. Le transfert est dit propre.

https://autorobo.ec-nantes.fr/movie/video.php?file=repind.mp4
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— Pour un système de classe 0, la réponse indicielle tends vers le gain statique K = Lh(0).
− Soit un système à temps discret, causal, avec tous les pôles non nuls stables.

— Si 1 est un zéro, la réponse indicielle tend vers 0.
— Sinon, la classe c est la multiplicité du pôle 1. On peut écrire le transfert sous la forme :

Zh(z) = K

(1−z
−1

)
c G(z) avec G(1) = 1 (3.8)

— La dérivée numérique ce de la réponse indicielle tend vers la constante K. 9

— Pour un système de classe 0, la réponse indicielle tends vers le gain statique K = Zh(1).

T105 3.7 Du transfert à la réponse temporelle avec conditions initiales

On peut calculer la réponse d’un système causal à une entrée quelconque connue uniquement pour les instants
positifs, en partant de conditions initiales connues, grâce aux transformées monolatères.

La transformée de Laplace monolatère L+y d’un signal à temps continu y est définie par : 10

L+y(s) =

∫ +∞

0−
y(t) e−s t d t (3.9)

− Le théorème de la dérivée devient : P6 11

L+ẏ(s) = sL+y(s)− y(0−) (3.10)

T106 La transformée en z monolatère Z+y d’un signal à temps discret y est définie par : 12

Z+y(z) =

+∞∑

n=0

y[n] z−n (3.11)

− Le théorème relatif à la translation temporelle devient : P7 13

Z+(y[n− 1])n(z) = z−1 Z+y(z)− y[−1] (3.12)

T107 ý Exercice 24 (Réponse du système du 1er ordre). Soit le transfert Lh(s) = K
1+s T .

a) Ecrire l’équation différentielle liant la réponse y à l’excitation u.
b) Ecrire la transformée monolatère de y en fonction de la transformée monolatère de u et de y(0−).
c) En déduire la réponse partant de y(0−) à une entrée constamment égale à 1 pour t ⩾ 0

− A l’issue de cet exercice, on voit que la réponse du système est la somme de la réponse à la partie causale de
l’excitation et d’un terme complémentaire dépendant des conditions initiales.

9. La dérivée numérique de (u[n])n est (u[n]− u[n− 1])n
10. Pour tout s tel que l’intégrale converge.

∫+∞
0− = lima↑0

∫+∞
a . On prend en compte le poids des impulsions en t = 0. y(0−) =

limt↑0 y(t).

P6. En intégrant par parties, L+
ẏ(s) =

∫+∞
0− ẏ(t) e

−s t
d t =

[
y(t) e

−s t
]+∞

0−
+ s

∫+∞
0− y(t) e

−s t
d t = sL+

y(s) − y(0−), où l’on a

supposé que limt→+∞ y(t) e
−s t

= 0, condition nécessaire pour que la transformée de laplace soit définie en s.

11. Par récurrence : L+ d
k
y

d t
k (s) = s

k L+
y(s)− [s

k−1
y(0−) + s

k−2 d y
d t

(0−) + · · ·+ s d
k−2

y

d t
k−2 (0−) + d

k−1
y

d t
k−1 (0−)]

12. Pour tout z tel que l’intégrale converge.
P7. Z+

[(y[n− 1])n∈Z] (z) =
∑+∞

n=0 y[n− 1] z
−n

=
∑+∞

m=−1 y[m] z
−m−1

=
∑+∞

m=0 y[m] z
−m−1

+ y[−1] = z
−1 Z+

y(z)− y[−1]

13. Par récurrence : Z+
[(y[n− k])n∈Z] (z) = z

−k Z+
y(z)− (z

−(k−1)
y[−1] + z

−(k−2)
y[−2] + · · ·+ z

−1
y[−(k − 1)] + y[−k])
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T108 3.8 Échantillonnage (transfert)

u(t) Lh(s) y(t)

Ts

us[n]

Ts

ys[n]Zh̃(z)

?

− Soit un système LTI causal à temps continu, de réponse impulsionnelle
h, excité par u, de réponse y.

Par échantillonnage à la période Ts, on obtient us et ys.

Existe-t-il un système à temps discret, de réponse impulsionnelle h̃, tel
que ys en soit la réponse à us ?

La réponse est en général négative ; la réponse échantillonnée ys[n] à
l’instant n dépend des valeurs de u(τ) pour tout τ ⩽ nTs, en particulier
les valeurs entre les instants d’échantillonnage.

Cependant, sous certaines hypothèses sur l’excitation u entre les instants d’échantillonnage, les méthodes d’in-
variance répondent rigoureusement à la question.
Sinon, on est contraint de faire des approximations (approximations de l’intégrateur).

T109 Dans une méthode d’invariance, on se donne une fonction ϕ.

La réponse à l’échantillonnage de ϕ du système échantillonné est
l’échantillonnage de la réponse à ϕ du système à temps continu :

h̃ ∗ ϕs = (h ∗ ϕ)s (3.13)

On obtient donc le transfert du système échantillonné par :

Zh̃(z) =
Z(h ∗ ϕ)s(z)

Zϕs(z)
(3.14)

ª Pour un système LTI, l’invariance à la fonction ϕ entraîne l’invariance à toute combinaison linéaire des fonctions
obtenues par translation de ϕ par un multiple de la période d’échantillonnage.
Il n’y a donc aucune approximation si l’excitation u peut être reconstruite à partir de son échantillonnage us
par un bloqueur fondé sur ϕ (page 20).

zoh Lh(s)
us[n] u(t) y(t) ys[n]T110 Si on prend ϕ = step, c’est l’invariance indicielle, ou mé-

thode ZOH :
Zh̃(z) =

Z(h ∗ step)s(z)
Z step(z)

= (1− z−1)Z(h ∗ step)s(z) (3.15)

ª Si le système est piloté par un calculateur numérique, l’excitation est constante entre deux instants d’échan-
tillonnage : le système échantillonné par l’invariance indicielle est exact.

− L’invariance impulsionnelle (ϕ = δ), et l’invariance à une rampe (ou méthode FOH, ϕ = ramp) sont
disponibles en annexe (page 38).

T111 Une méthode d’approximation de l’intégrateur intègre par la méthode des rectangles ou des trapèzes.

L’intégration est une convolution avec l’échelon. Son transfert est :

Ly(s)
Lu(s) = L step(s) =

1

s
(3.16)

Le transfert de l’approximation ŷs de ys à partir de us s’écrit : P8

Z ŷs(z)

Zus(z)
= Ts ×





Z(step− δ)(z)

Z step(z)

Z(step− 1
2 δ)(z)

= Ts ×





z
−1

1−z
−1 (rectangles à gauche)

1

1−z
−1 (rectangles à droite)

1
2

1+z
−1

1−z
−1 (trapèzes)

(3.17)

P8. L’échantillonnage de y à la période Ts donne : ys[n] − ys[n − 1] =
∫ nTs
(n−1)Ts

u(τ) d τ . Les approximations ŷs de ys peuvent donc

s’écrire : ŷs[n]− ŷs[n− 1] =


Ts us[n− 1] (rectangles à gauche)
Ts us[n] (rectangles à droite)
Ts

us[n]+us[n−1]
2

(trapèzes)
. Par le théorème du retard, on obtient le résultat.
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Au facteur multiplicatif Ts près, il s’agit d’une convolution avec 3 versions de l’échelon :

— à valeur 0 en 0 pour les rectangles à gauche,
— à valeur 1 en 0 pour les rectangles à droite,
— à valeur 1

2 en 0 pour les trapèzes.

T112 En inversant les transferts, on obtient trois approximations du dérivateur :

— l’intégration par rectangles à gauche donne l’approximation d’Euler de la dérivée à droite ;
— l’intégration par rectangles à droite donne l’approximation d’Euler de la dérivée à gauche ;
— l’intégration par trapèzes donne l’approximation de Tustin, ou approximation bilinéaire.




Er(z)=
z−1
Ts

(Euler à droite)

El(z) =
1−z

−1

Ts
(Euler à gauche)

B(z) = 2
Ts

1−z
−1

1+z
−1 (Tustin)

(3.18)

− Pour échantillonner un système LTI à temps continu de réponse impulsionnelle h à la période Ts, il suffit de faire,
pour la transformation de Tustin par exemple :

Zh̃(z) = Lh(B(z)) (3.19)

− La transformation bilinéaire, détaillée en annexe (page 39), transforme le cercle unité en l’axe imaginaire, ce qui
conserve la stabilité.

T113 ý Exercice 25. Soit le système de transfert K
1+s T . On l’échantillonne à la période Ts.

a) Donner la solution par invariance indicielle.
b) On suppose que Ts ≪ T , d’où l’approximation exp(−Ts

T ) ≈ 1− Ts
T . Simplifier la solution précédente.

c) Donner la solution par Euler à droite.

T114 3.9 Représentation dans l’espace d’état

Un système causal d’entrée u, de sortie y, admet une représentation dans l’espace d’état s’il existe 4 matrices A,
B, C et D, telles qu’on puisse écrire l’équation d’observation :

y(t) = C x(t) +Du(t) y[n] = C x[n] +Du[n] (3.20)

où la fonction vectorielle x, l’état, vérifie l’équation différentielle (ou récurrente) dite équation d’état :

ẋ(t) = Ax(t) +B u(t) x[n+ 1] = Ax[n] +B u[n] (3.21)

A est la matrice d’évolution, ou matrice de transition,
B est la matrice de commande,
C est la matrice d’observation,
D est la matrice de transmission directe.

R L

Cu(t) y(t)

i(t)

.

.

T115 On obtient souvent une représentation dans l’espace d’état en organisant
sous forme vectorielle les équations différentielles, obtenues par exemple à
partir de lois physiques.

ý Exercice 26. Soit le quadripôle RLC ci-contre. Les lois de l’électricité permettent d’écrire :

u− y = R i+ L d i
d t i = C d y

d t

Ecrire la représentation dans l’espace d’état correspondant à l’état x =
[ y
i

]
.
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T116 3.10 De l’espace d’état au transfert, et inversement

On obtient le transfert à partir d’une représentation dans l’espace d’état par : 14 P9

Lh(s) = C (s I −A)−1 B +D Zh(z) = C (z I −A)−1 B +D (3.22)

ª Les représentations dans l’espace d’état et par transfert rationnel sont équivalentes.
La dimension du vecteur d’état est égale au degré du dénominateur du transfert.

− L’inverse de s I−A est l’inverse du déterminant multiplié par la matrice complémentaire. Ce déterminant, qui n’est
autre le polynôme caractéristique de A, est donc le dénominateur du transfert.

Ses racines, c’est-à-dire les valeurs propres de la matrice d’évolution, sont donc les pôles du système.
Le système est donc stable ssi les valeurs propres de la matrice d’évolution A sont à partie réelle négative en continu,
dans le cercle unité en discret.

T117 On peut obtenir une représentation dans l’espace d’état à partir d’un transfert rationnel de la forme :

Lh(s) =
M−1∑
i=0

bM−i s
i
+b0 s

M

N−1∑
i=0

aN−i s
i
+s

N
Zh(z) =

M−1∑
i=0

bM−i z
i
+b0 z

M

N−1∑
i=0

aN−i z
i
+z

N
(3.23)

On va exhiber deux formes particulières, les formes canoniques.

T118 Pour un système sans transmission directe (M < N), la forme canonique directe s’écrit :

A =

[
−a1 ··· −aN−1 −aN

I(N−1)×(N−1) 0(N−1)×1

]
B =

[
1

0(N−1)×1

]

C =
[
0(N−M−1)×1

b0 ··· bM
]

D = 0

(3.24)

La forme canonique inverse s’écrit : P10

A =




−a1...
−aN−1

I(N−1)×(N−1)

−aN 01×(N−1)


 B =



0(N−M−1)×1

b0...
bM




C =
[
1 01×(N−1)

]
D = 0

(3.25)

T119 Pour un système avec transmission directe (M = N), la forme canonique directe s’écrit :

A =

[
−a1 ··· −aN−1 −aN

I(N−1)×(N−1) 0(N−1)×1

]
B =

[
1

0(N−1)×1

]

C =
[
b1−b0 a1 ··· bN−b0 aN

]
D = b0

(3.26)

La forme canonique inverse s’écrit : P11

A =




−a1...
−aN−1

I(N−1)×(N−1)

−aN 01×(N−1)


 B =

[
b1−b0 a1...
bN−b0 aN

]

C =
[
1 01×(N−1)

]
D = b0

(3.27)

14. où I désigne la matrice identité dont le nombre de lignes ou de colonnes égale la dimension du vecteur d’état.

P9. Par transformée de Laplace, et par le théorème de la dérivée,
{
sLx(s) = ALx(s) +B Lu(s)
Ly(s) = C Lx(s) +DLu(s) , dont on déduit le rapport Ly(s)

Lu(s)
.

P10. Voyons la méthode sur un exemple, avec N = 3 et M = 1 : Ly(s)
Lu(s)

=
b1+b0 s

a3+a2 s+a1 s
2
+s

3 =
b0 s

−2
+b1 s

−3

1+a1 s
−1

+a2 s
−2

+a3 s
−3 . Pour la

forme directe, on pose : Lx3(s) =
Ly(s)

b1+b0 s
=

Lu(s)

a3+a2 s+a1 s
2
+s

3 , Lx2(s) = sLx3(s), Lx1(s) = sLx2(s). Pour la forme inverse, on

décompose Ly(s) = s
−1

{
[−a1 Ly(s)] + s

−1 [
(b0 Lu(s)− a2 Ly(s)) + s

−1
(b1 Lu(s)− a3 Ly(s))︸ ︷︷ ︸

Lx3(s)

]
︸ ︷︷ ︸

Lx2(s)

}

︸ ︷︷ ︸
Lx1(s)

selon le schéma de Horner.

P11. On part du système sans transmission directe de transfert Lh(s)− b0 =

N−1∑
i=0

(bN−i−b0 aN−i) s
i

N−1∑
i=0

aN−i s
i
+s

N
.
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. Les formes canoniques sont 2 représentations candidates parmi une infinité. 15

T120 ý Exercice 27. Ecrire une représentation dans l’espace d’état du système de transfert K
1+s T .

T121 3.11 Solution de l’équation d’état

La résolution en temps continu nécessite la notion d’exponentielle de matrice.

— L’exponentielle d’une matrice carrée A s’écrit : eA =

+∞∑

k=0

1

k!
Ak = I +A+

1

2
A2 + · · ·

— Pour une matrice diagonale S =

[
s1 0

. . .
0 sN

]
: eS =

[
e
s1 0

. . .
0 e

sN

]

— Pour une matrice diagonalisable A = P S P−1 avec S diagonale : eA = P eS P−1

— Pour une matrice non diagonalisable, le calcul est plus complexe, mais toujours possible.

— Si A et A′ commutent (AA′ = A′ A), alors eA+A
′

= eA eA
′

− La transformée de Laplace de t 7→ eA t step(t) est s 7→ (s I −A)−1. P12

T122 La solution de l’équation différentielle ẋ = Ax+ B u qui régit l’évolution du vecteur d’état d’un système à temps
continu est, pour tout t > 0 : P13

x(t) = eA t x(0−) +

∫ t

0−
eA (t−τ) B u(τ) d τ (3.28)

ý Exercice 28. La formule ci-dessus se généralise en x(t) = eA (t−t0) x(t0) +
∫ t

t0
eA (t−τ) B u(τ) d τ .

u est supposé bloqué à la valeur u(nTs) entre les instants nTs et (n+ 1)Ts.
Ecrire la formule donnant x((n+ 1)Ts) en fonction de u(nTs) et x(nTs).

− On montre par récurrence que la solution de l’équation récurrente x[n + 1] = Ax[n] + B u[n] qui régit l’évolution
du vecteur d’état d’un système à temps discret est, pour tout n ⩾ 0 :

x[n] = An x[0] +

n−1∑

k=0

An−k−1 B u[k] (3.29)

15. Soit P une matrice carrée inversible, et définissons les matrices (A
′
, B

′
, C

′
, D

′
) telles que :

A
′
= P AP

−1
B

′
= P B

C
′
= C P

−1
D

′
= D

Par le changement de base x
′
= P x, on vérifie immédiatement que la représentation (A

′
, B

′
, C

′
, D

′
) d’état x

′ et la représentation
(A,B,C,D) d’état x donnent le même comportement entrée-sortie.

P12. La transformée de t 7→ e
A t

step(t) s’écrit
∑+∞

k=0 A
k 1

s
k+1 . On obtient la matrice identité en multipliant cette somme par sI −A.

P13. L’équation homogène s’écrit : ẋ = Ax. En lui appliquant la transformée de Laplace monolatère : L+
x(s) = (s I − A)

−1
x(0−).

Par Laplace monolatère inverse, x(t) = e
A t

x(0−). La solution générale est obtenue par variation des constantes.



3.12. ÉCHANTILLONNAGE (ESPACE D’ÉTAT) 35

T123 3.12 Échantillonnage (espace d’état)

Soit un système à temps continu admettant une représentation d’état définie par le quadruplet (A,B,C,D), d’entrée
u, de sortie y, d’état x : {

y(t) = C x(t) +Du(t)
ẋ(t) = Ax(t) +B u(t)

(3.30)

Soit Ts la période d’échantillonnage.
On obtient us et ys, échantillonnages de u et y.

Par une méthode d’invariance ou par approximation de l’intégrateur, on obtient une représentation dans l’espace
d’état du système échantillonné d’entrée us et de sortie ys, définie par le quadruplet de matrices (Ã, B̃, C̃, D̃) :

{
ys[n] = C̃ x̃[n] + D̃ us[n]

x̃[n+ 1] = Ã x̃[n] + B̃ us[n]
(3.31)

zoh A,B,C,D
us[n] u(t) y(t) ys[n]T124 Pour l’invariance indicielle, l’entrée du système à temps

continu est obtenue par blocage d’ordre 0.

− Avec le vecteur d’état x̃ = xs, on obtient une représentation d’état définie par le quadruplet (Ã, B̃, C̃, D̃) suivant :

Ã = eATs B̃ =

∫ Ts

0

eAτ B d τ

C̃ = C D̃ = D

(3.32)

− La démonstration est disponible en annexe (page 43), ainsi que l’échantillonnage par l’invariance à une rampe et
par la méthode de Tustin.

T125 ý Exercice 29. Soit le système causal de transfert K
1+s T :

a) Proposer une représentation dans l’espace d’état.
b) L’échantillonner par invariance indicielle à la période Ts.
c) En déduire la fonction de transfert à temps discret.

ý Exercice 30. Mêmes questions pour le gain pur K.
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T126 3.13 Vers le multientrée-multisortie et le non linéaire

Un système LTI multi-entrée multi-sortie (MIMO) peut être représenté par une matrice de transfert, qui est
une matrice de fonctions de transfert ; par exemple, dans le cas 2 entrées-2 sorties :

[
Ly1(s)
Ly2(s)

]
=

[
Lh1,1(s) Lh1,2(s)
Lh2,1(s) Lh2,2(s)

] [
Lu1(s)
Lu2(s)

]
(3.33)

− La représentation dans l’espace d’état reste valide, avec des matrices A, B, C, D de dimension convenable.
{
y(t) = C x(t) +Du(t)
ẋ(t) = Ax(t) +B u(t)

(3.34)

− Contrairement au transfert, la représentation dans l’espace d’état s’étend aux systèmes non LTI :
{
y(t) = g(t, u(t), x(t))
ẋ(t) = f(t, u(t), x(t))

(3.35)

T127 3.14 Simulation

− La simulation conduit à la résolution d’une équation différentielle ordinaire
ẋ(t) = f(t, x(t)), c’est-à-dire :

x(t+ d t) = x(t) + f(t, x(t)) d t (3.36)

Les calculateurs analogiques (ci-contre) ne sont plus à la mode.
Sur calculateur numérique, la méthode d’Euler consiste à choisir un pas d’in-
tégration fixe ∆t et à calculer la récurrence :

x̂(t+∆t) = x̂(t) + f(t, x̂(t))∆t (3.37)

Les résultats sont souvent mauvais, on dispose de méthodes de résolution (sol-
veurs) développées par les spécialistes d’analyse numérique.

Dans les méthodes à pas variable, il y a ajustement automatique du pas d’intégration.

En pratique, on étudie la physique du système pour choisir une valeur raisonnable du pas d’intégration maximal,
et on teste divers solveurs.



Annexe A

Compléments

A.1 Propriétés de symétrie de la transformation de Fourier

Signal Transformée
Réel x = x∗ Parties réelle paire,

imaginaire impaire
Imaginaire x = −x∗ Parties réelle impaire,

imaginaire paire
Pair x = x Paire
Impair x = −x Impaire
Parties réelle paire,
imaginaire impaire x = x∗ Réelle
Parties réelle impaire,
imaginaire paire x = −x∗ Imaginaire

x∗ désigne le signal x conjugué, x désigne le signal
x retourné (x(t) = x(−t)).

Si le signal x est conjugué et/ou retourné :

Fccx∗(f) = (Fccx(−f))
∗

Fccx(f) = Fccx(−f)

Fccx∗(f) = (Fccx(f))∗
(A.1)

On en déduit des propriétés de symétrie de la trans-
formée de signaux particuliers, dans le tableau ci-
contre.

A.2 Théorème de décimation de Shannon

Soit un signal à temps discret x, que l’on a décimé (sous-échantillonné) d’un facteur N ∈ N∗ ; pour tout n :

x↓N [n] = x[N n]

Connaissant le signal sous-échantillonné x↓N , est-il possible de reconstruire le signal d’origine x ?
Il est équivalent de se poser la question suivante : connaissant Fdcx↓N , peut-on reconstruire Fdcx ?

La décimation entraîne une perte d’information. Cependant, sous certaines conditions, on peut reconstruire exacte
est possible. Exprimons préalablement la transformée Fdcx↓N en fonction de Fdcx : P1

Fdcx↓N (N λ) = 1
N

N−1∑

ℓ=0

Fdcx
(
λ− ℓ

N

)
(A.2)

La fonction λ 7→ Fdcx↓N (N λ) est périodique de période 1
N . Donc :

si Fdcx(λ) = 0 pour tout λ ∈
[

1
2N , 1− 1

2N

]

alors Fdcx(λ) = N Fdcx↓N (N λ) pour tout λ ∈
[
− 1

2N , 1
2N

] (A.3)

Dans le domaine temporel :

x[n] =

+∞∑

k=−∞
x↓N [k] sinc

(
n−kN

N

)
(A.4)

P1. Fdcx↓N (N λ) = Fdcx↓N↑N (λ) = Fdc(x 1↑N )(λ) = (Fdcx ⊛ Fdc 1↑N )(λ). Or Fdc 1↑N (λ) = X(N λ) = 1
N

∑+∞
k=−∞ δ(λ − k

N
) =

1
N

∑N−1
ℓ=0 X(λ− ℓ

N
). Donc Fdcx↓N (N λ) = 1

N

∑N−1
ℓ=0 Fdcx(λ− ℓ

N
)

37
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A.3 Blocage

En général, un bloqueur est fondé sur une fonction ϕ telle que :

— le signal bloqué xh est une combinaison linéaire de ϕ et de ses versions décalées d’un multiple de Ts ;
— l’échantillonnage à Ts de xh redonne le signal d’origine x.

Alors, nécessairement, pour tout t (l’exposant −1 désigne l’inverse pour la convolution) : P2

xh(t) =

+∞∑

n=−∞
(x ∗ ϕ−1

s )[n]ϕ(t− nTs) (A.5)

ϕ = step donne le bloqueur d’ordre 0 (zoh), ϕ = ramp donne le bloqueur d’ordre 1 (foh). Récrire cette formule en
terme de convolution fournit la décomposition d’un bloqueur quelconque à l’aide du bloqueur impulsionnel : 1 P3

xh ∗ ϕ−1 = 1
Ts

(x ∗ ϕ−1
s )imp (A.6)

1
Ts Zϕs(z)

imp Lϕ(s)
x[n] xh(t)

Pour un bloqueur d’ordre 0 (ϕ = step) :

1−z
−1

Ts
imp 1

s

x[n] xzoh(t)

Pour un bloqueur d’ordre 1 (ϕ = ramp) :
z−2+z

−1

T
2
s

imp 1

s
2

x[n] xfoh(t)

A.4 Echantillonnage d’un transfert

imp Lh(s)
us[n] u(t) y(t) ys[n]Invariance impulsionnelle L’entrée du système à temps

continu est obtenue par blocage impulsionnel.

Zh̃(z) = Ts Zhs(z) (A.7)

zoh Lh(s)
us[n] u(t) y(t) ys[n]Invariance indicielle, ou méthode ZOH L’entrée du

système à temps continu est obtenue par blocage d’ordre 0.

Zh̃(z) =
Z(h ∗ step)s(z)

Z step(z)
= (1− z−1)Z(h ∗ step)s(z) (A.8)

foh Lh(s)
us[n] u(t) y(t) ys[n]Invariance à une rampe, ou méthode FOH L’entrée

du système à temps continu est obtenue par blocage d’ordre
1.

Zh̃(z) =
Z(h ∗ ramp)s(z)

Ts Z ramp(z)
=

1

Ts
(z − 2 + z−1)Z(h ∗ ramp)s(z) (A.9)

P2. Par la 1re hypothèse, il existe une suite α telle que xh(t) =
∑+∞

k=−∞ α[k]ϕ(t− k Ts). Par échantillonnage, et comme (ϕs[n− k])n

est l’échantillonnage de t 7→ ϕ(t− k Ts) : xh,s[n] =
∑+∞

k=−∞ α[k]ϕs[n− k] = (α ∗ ϕs)[n]. Comme, par la 2e hypothèse, on veut que
xh,s = x, nécessairement, α ∗ ϕs = x.

1. Dans le domaine des transformées de Laplace et en z, en se rappelant la formule (2.56) : Lxh
Lϕ

(s) = Zx
Zϕs

(
e
s Ts

)
P3. [ 1

Ts
(x ∗ ϕ

−1
s )imp ∗ ϕ](t) =

∫+∞
−∞

∑
n(x ∗ ϕ

−1
s )[n] δ(τ − nTs)︸ ︷︷ ︸

1
Ts

(x∗ϕ−1
s )imp(τ)

ϕ(t− τ) d τ =
∑

n(x ∗ ϕ
−1
s )[n]

∫+∞
−∞ δ(τ − nTs)ϕ(t− τ) d τ︸ ︷︷ ︸

ϕ(t−nTs)
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A.5 Transformation de Tustin

La transformation bilinéaire transforme le cercle unité en l’axe des imaginaires purs : P4

B(ej 2π λ) = j 2π fs
tan(π λ)

π
(A.10)

Donc, si h̃ est l’échantillonnage de h par la méthode de Tustin :

Fdch̃(λ) = Fcch
(
fs

tan(π λ)
π

)
et, inversement Fcch(f) = Fdch̃

(
1
π arctan(π f

fs
)
)

(A.11)

Pour f petit devant fs, arctan(π
f
fs
) ≈ π f

fs
; on a alors : Fcch(f) = Fdch̃

(
f
fs

)

−fs/2 +fs/20
−1/2

+1/2

0

f

λ

La transformée bilinéaire comprime l’axe des fréquences
du système à temps continu vers le segment [− 1

2 ,
1
2 ]. Cette

distorsion de fréquence est négligeable pour les basses fré-
quences (c’est-à-dire pour les fréquences petites devant la
fréquence de Nyquist fs

2 ).

La transformation de Tustin garantit un comportement
fréquentiel analogue du système à temps continu et du
système échantillonné correspondant pour les basses fré-
quences.

Cependant, si le contenu spectral de l’entrée u est concentré autour d’une fréquence f0 < fs
2 , il peut être préférable

de définir une transformation qui impose un comportement fréquentiel identique en cette fréquence, c’est-à-dire :

Fcch(f0) = Fdch̃
(

f0
fs

)
(A.12)

Il faut comprimer horizontalement la courbe ci-dessus ; ceci est obtenu par la transformée bilinéaire modifiée : P5

Bmod(z) =
2

Tmod

1− z−1

1 + z−1 avec Tmod =
tan(π f0 Ts)

π f0
(A.13)

A.6 Retard de phase, retard de groupe

Soit un système LTI de transfert Fcch = G ej Φ. Le retard de phase τϕ et le retard de groupe τg sont définis par :

τϕ(f) = − 1

2π

Φ(f)

f
τg(f) = − 1

2π

dΦ

d f
(f) (A.14)

Soit une sinusoïde modulée en amplitude :

u(t) = a(t)S(t) avec

{
S une sinusoïde de fréquence f0
a un signal basse fréquence (devant f0)

La réponse à cette entrée est approximativement : P6

(h ∗ u)(t) ≃ G(f0) a(t− τg(f0))S(t− τϕ(f0)) (A.15)

La sinusoïde S est retardée du retard de phase, l’amplitude lentement variable a est retardée du retard de groupe.

P4. B(e
j 2π λ

) = 2
Ts

e
j 2π λ−1

e
j 2π λ

+1
= 2

Ts

(e
j 2π λ−1) (e

−j 2π λ
+1)

(e
j 2π λ

+1) (e
−j 2π λ

+1)
= 2

Ts
j

sin(2π λ)
1+cos(2πλ)

= 2
Ts

j tan(π λ) = j 2π fs
tan(π λ)

π

P5. En posant fmod = 1/Tmod, (A.11) est remplacée par : Fdch̃(λ) = Fcch(fmod
tan(π λ)

π
). Donc : Fdch̃

(
f0
fs

)
= Fcch(

fmod
π

tan(π
f0
fs

)).
(A.12) est alors vérifiée avec la solution (A.13).

P6. L’hypothèse que le signal a est basse-fréquence peut s’écrire : Fcca(f) = 0 si |f | > fmax avec fmax ≪ |f0|.
D’après la formule (2.21), la transformée de Fourier de u s’écrit, pour tout f : Fccu(f) = Fcca(f − f0).
Cette transformée est donc nulle hors de l’intervalle [f0 ∓ fmax]. Dans ce petit intervalle, on peut admettre que G(f) ≈ G(f0), et
que Φ(f) ≈ Φ(f0) + (f − f0)

dΦ
d f

(f0), c’est-à-dire Φ(f) ≈ −2π f0 τϕ(f0)− 2π (f − f0) τg(f0).

Alors, par le théorème du retard : Fcc(h ∗u)(f) = G(f) e
j Φ(f) Fcca(f − f0) ≈ G(f0) e

−j 2π f0 τϕ(f0) e
−j 2π (f−f0) τg(f0) Fcca(f − f0)︸ ︷︷ ︸

Fcc(t7→a(t−τg(f0)))(f−f0)

.

Par transformée de Fourier inverse, et par la relation (2.21), on obtient le résultat.
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A.7 Plan de Bode

-40dB
-20dB

0dB
20dB
40dB

|Fcch(f)|dB

10
−2

10
−1 1 10 10

2−360
◦

−270
◦

−180
◦

−90
◦

0
◦ arg[Fcch(f)]

f/fref

Pour un système dont la réponse impulsionnelle h est à valeurs
réelles, la réponse fréquentielle est à module pair et phase impaire.
La représenter pour les fréquences positives suffit.

Le plan de Bode a deux courbes : le gain, et la phase.

L’axe des abscisses est la fréquence, en échelle logarithmique ; on
choisit une fréquence de référence fref .

2

On choisit une détermination continue de la phase.

On représente le module en échelle déciBel (dB). Une grandeur positive G est exprimée en dB par :

GdB = 20 log10
G

Gref

où Gref est une grandeur de référence arbitraire positive, homogène à G. 3

L’échelle dB est définie à une constante additive près, et n’a de sens que lorsqu’on fait la différence entre deux
valeurs homogènes exprimées en dB, car cette différence est indépendante de la grandeur de référence choisie.

Si l’on souhaite comparer deux grandeurs homogènes G1 et G2 dont le rapport G1

G2
vaut 10n, ceci se traduit en

échelle dB par une différence (G1)dB − (G2)dB égale à 20× n dB.

G1/G2 1000 100 10 2
√
2 1

√
2/2 1/2 1/10 1/100 1/1000

(G1)dB − (G2)dB 60 40 20 6 3 0 -3 -6 -20 -40 -60

A.8 Systèmes du 1er ordre

Les systèmes du 1er ordre sont les systèmes régis par l’équation différentielle à coefficients constants :

y + T ẏ = K u (A.16)

Par le théorème de la dérivée, on obtient immédiatement la fonction de transfert d’un tel système :

Lh(s) = K

1 + s T
(A.17)

Par transformée de Laplace monolatère :

L+y(s) =
K

1 + s T
L+u(s) +

T y(0−)

1 + s T
(A.18)

K est le gain statique ; T est la constante de temps, nécessairement positive pour assurer la stabilité du système
(le pôle − 1

T est à partie réelle négative si et seulement si T > 0), qui s’exprime en unité de temps.

0 T

0, 63K

K

0
2T 3T 4T 5T

t

(h
∗s

te
p
)(

t)

Les réponses impulsionnelle et indicielle sont :

h(t) =
K

T
e−

t
T step(t)

(h ∗ step)(t) = K (1− e−
t
T ) step(t)

(A.19)

La réponse du système en régime libre, partant de la condi-
tion initiale y(0−), est :

y(t) = y(0−) e−
t
T pour tout t ⩾ 0 (A.20)

La constante de temps T est le temps que met la réponse indicielle du système pour atteindre 63 % de sa valeur
finale K ; c’est donc une mesure de lenteur (plus T est grande, plus le système est lent).

2. On appelle une bande de fréquence de la forme [f0, 10 f0] une décade, une bande de fréquence de la forme [f0, 2 f0] une octave.
3. Certains multimètres électroniques permettent de mesurer une tension ou une intensité directement en échelle dB, l’utilisateur

pouvant fixer la grandeur de référence à son gré.
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La réponse fréquentielle s’exprime par :

Fcch(f) =
K

1 + j 2π f T
(A.21)

En posant fc =
1

2π T , le gain et la phase s’écrivent :

|Fcch(f)|dB = |K|dB − 20 log10

∣∣∣1 + j f
fc

∣∣∣

arg (Fcch(f)) = arg(K)− arctan
(

f
fc

) (A.22)

avec arg(K) = 0 si K > 0, arg(K) = −π si K < 0.

En basse fréquence (f ≪ fc), et en haute fréquence (f ≫
fc), la courbe de gain tend vers 2 droites asymptotiques :

lim
f↓0

|Fcch(f)|dB = |K|dB

lim
f↑+∞

|Fcch(f)|dB = |K|dB − 20 log10
f

fc

(A.23)

L’asymptote en haute fréquence est une droite de pente -20 dB/décade (si la fréquence est multipliée par 10,
l’ordonnée de la droite diminue de 20 dB) ou, de façon équivalente, de pente -6 dB/octave (si la fréquence est
multipliée par 2, l’ordonnée de la droite diminue de 6 dB). Ces deux asymptotes se coupent pour la fréquence fc.
De plus :

|Fcch(fc)|dB = |K|dB − 3 dB (A.24)

La fréquence fc est appelée fréquence de coupure à -3 dB, car la valeur du module de la réponse fréquentielle en
cette fréquence est égale à la valeur dans la bande passante (en basse fréquence) diminuée de 3 dB.

Un tel modèle peut représenter, par exemple, la température affichée par un thermomètre en fonction de la tem-
pérature du milieu ambiant.

A.9 Systèmes du 2e ordre

Les systèmes du 2e ordre sont les systèmes régis par l’équation différentielle à coefficients constants :

y + 2 ζ
ẏ

ωn

+
ÿ

ω2
n

= K u (A.25)

Par le théorème de la dérivée, on obtient immédiatement la fonction de transfert d’un tel système :

Lh(s) = K

1 + 2 ζ s
ωn

+ s
2

ω
2
n

(A.26)

Par transformée de Laplace monolatère :

L+y(s) =
K

1 + 2 ζ s
ωn

+ s
2

ω
2
n

L+u(s) +
1

ω2
n

2 ζ ωn y(0−) + ẏ(0−) + s y(0−)

1 + 2 ζ s
ωn

+ s
2

ω
2
n

(A.27)

K est le gain statique ; ωn est la pulsation naturelle (en rad.s−1), ζ est le coefficient d’amortissement (adimension-
nel), nécessairement tous deux positifs pour assurer la stabilité du système.

0 tp 2tp 3tp 4tp 5tp

K(1 + X1)

K

0

ζ < 1

ζ > 1

t

(h
∗s

te
p
)(

t)

Réponses temporelles Par transformée de Laplace in-
verse, on obtient la réponse indicielle, dont la forme dépend
de ζ.

• 0 ⩽ ζ < 1. Les pôles complexes conjugués sont −ωn (ζ ± j

√
1− ζ2), la réponse indicielle s’exprime par :

(h ∗ step)(t) = K

(
1− 1√

1−ζ
2
e−ζ ωn t sin(ωn

√
1− ζ2 t+ arccos ζ)

)
step(t) (A.28)

Cette réponse est pseudo-périodique, de pulsation (appelée pulsation propre) ωp = ωn

√
1− ζ2.

Un système LTI à réponse indicielle pseudo-périodique peut être caractérisé par le triplet (K, tp, X1), où :



42 ANNEXE A. COMPLÉMENTS

— le temps de 1er dépassement tp est le temps pour lequel la réponse indicielle atteint son 1er maximum.
— L’amplitude du 1er dépassement X1 (adimensionnel) ; soit y la réponse à un échelon d’amplitude quelconque :

X1 =
y(tp)− y(+∞)

y(+∞)

pour un système du 2e ordre caractérisé par le triplet (K,ωn, ζ < 1) :

tp = π

ωn

√
1−ζ

2
X1 = exp(− π ζ√

1−ζ
2
)

La dérivée de la réponse indicielle s’annule pour tout multiple de tp.

• ζ = 1. Le pôle double est −ωn, la réponse indicielle apériodique vaut :

(h ∗ step)(t) = K
(
1− (1 + ωn t) e

−ωn t
)
step(t) (A.29)

On parle d’amortissement critique.

• ζ > 1. Les pôles −T−1
1 = −ωn (ζ +

√
ζ2 − 1) et −T−1

2 = −ωn (ζ −
√

ζ2 − 1) sont réels, La réponse indicielle
apériodique vaut :

(h ∗ step)(t) = K
(
1 + T1

T2−T1
e
− t

T1 − T2

T2−T1
e
− t

T2

)
step(t) (A.30)
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La réponse fréquentielle s’exprime par (fn = ωn

2π ) :

Fcch(f) =
K

1−
(

f
fn

)2

+ j 2 ζ f
fn

(A.31)

Le gain et la phase s’écrivent :

|Fcch(f)|dB = |K|dB − 20 log10

∣∣∣∣1−
(

f
fn

)2

+ j 2 ζ f
fn

∣∣∣∣

arg (Fcch(f)) =





arg(K)− arctan
2 ζ

f
fn

1−
(

f
fn

)2 si f < fn

arg(K)− π + arctan
2 ζ

f
fn

1−
(

f
fn

)2 si f > fn

(A.32)

avec arg(K) = 0 si K > 0, arg(K) = −π si K < 0.

En basse fréquence (f ≪ fn), et en haute fréquence (f ≫ fn), la courbe de gain tend vers 2 droites asymptotiques :

lim
f↓0

|Fcch(f)|dB = |K|dB

lim
f↑+∞

|Fcch(f)|dB = |K|dB − 40 log10
f
fn

(A.33)

L’asymptote en basse fréquence est une droite horizontale. L’asymptote en haute fréquence est une droite de pente
-40 dB/décade ou, de façon équivalente, de pente -12 dB/octave. Ces deux asymptotes se coupent pour la fréquence

fn. Si ζ <
√
2
2 , cette courbe admet un maximum pour la fréquence fr = fn

√
1− 2 ζ2, dite fréquence de résonance.

La valeur Mp de ce maximum ramenée à la valeur du module dans la bande passante est appelée surtension :

Mp =
|Fcch(fr)|

K
=

1

2 ζ

√
1− ζ2

(A.34)
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A.10 Echantillonnage dans l’espace d’état

zoh A,B,C,D
us[n] u(t) y(t) ys[n]Invariance indicielle L’entrée du système à temps continu

est obtenue par blocage d’ordre 0.

Avec le vecteur d’état x̃ = xs, on obtient une représentation d’état définie par le quadruplet (Ã, B̃, C̃, D̃) sui-
vant : 4 P7

Ã = eATs B̃ =

∫ Ts

0

eAτ B d τ

C̃ = C D̃ = D

(A.35)

foh A,B,C,D
us[n] u(t) y(t) ys[n]Invariance à une rampe L’entrée du système à temps

continu est obtenue par blocage d’ordre 1.

On pose :

G =

∫ Ts

0

eAτ B d τ H =

∫ Ts

0

eAτ B (1− τ
Ts
) d τ (A.36)

Avec le vecteur d’état x̃ = xs − H us, on obtient une représentation d’état définie par le quadruplet (Ã, B̃, C̃, D̃)

suivant : 5 P8

Ã = eATs B̃ = G−H + eATs H

C̃ = C D̃ = D + C H
(A.37)

Transformation de Tustin On pose :
P = ( 2

Ts
I −A)−1 (A.38)

Avec le vecteur d’état x̃ = 1
2 (P

−1 xs − B us), on obtient une représentation d’état définie par le quadruplet
(Ã, B̃, C̃, D̃) suivant : P9

Ã =
(

2
Ts
I +A

)
P B̃ = 2

Ts
P B

C̃ = 2C P D̃ = C P B +D
(A.39)

On remarque que la matrice de transmission directe D̃ = Lh( 2
Ts
), P10 où h est la réponse impulsionnelle du système à

temps continu. Donc, même si ce système n’est pas à transmission directe, le système échantillonné l’est en général.
Enfin, la transformation de Tustin modifiée, garantissant le même comportement fréquentiel en une fréquence
arbitraire f0, s’obtient en remplaçant Ts dans (A.39) par la période d’échantillonnage fictive Tmod définie dans
(A.13).

4. On montre que B̃ =
∑+∞

k=0
T

k+1
s

(k+1)!
A

k
B. On en déduit que

[
Ã B̃

0
T
N 0

]
= exp

[
ATs B Ts

0
T
N 0

]
P7. xs[n+ 1] = e

ATs x(nTs) +
∫ (n+1)Ts
nTs

e
A ((n+1)Ts−τ)

B u(τ) d τ = e
ATs xs[n] +

∫ (n+1)Ts
nTs

e
A ((n+1)Ts−τ)

B d τ︸ ︷︷ ︸∫ Ts
0 e

Aτ
B d τ

us[n]

5. On montre que G =
∑+∞

k=0
T

k+1
s

(k+1)!
A

k
B et H =

∑+∞
k=0

T
k+1
s

(k+2)!
A

k
B. On en séduit que

[
Ã G H

0
T
N 0 1

0
T
N 0 0

]
= exp

[ATs B Ts 0

0
T
N 0 1

0
T
N 0 0

]
P8. Par (3.28) : xs[n+ 1] = e

ATs xs[n] +
∫ (n+1)Ts
nTs

e
A ((n+1)Ts−τ)

B u(τ) d τ

= e
ATs xs[n] +

∫ (n+1)Ts
nTs

e
A ((n+1)Ts−τ)

B
[
us[n] + (τ − nTs)

us[n+1]−us[n]
Ts

]
d τ

= e
ATs xs[n] +

∫ Ts
0 e

Aτ
B

[
τ
Ts

us[n] + (1− τ
Ts

) (us[n+ 1]− us[n])
]
d τ = e

ATs xs[n] + (G−H)us[n] +H us[n+ 1]

En se rappelant la définition de x̃, on obtient immédiatement la représentation d’état (A.37).
P9. La matrice P est bien définie, car 2

Ts
ne peut être racine de s 7→ det(s I − A), polynôme caractéristique de A pour un système

causal stable. Examinons alors l’équation d’état : sLx(s) = ALx(s) +B Lu(s).
La transformation de Tustin s’écrit alors : B(z)Zxs(z) = AZxs(z) +BZus(z), avec la transformation bilinéaire B(z) = 2

Ts

z−1
z+1

.

En développant, et en utilisant le théorème du retard : 2
Ts

(xs[n+ 1]− xs[n]) = A (xs[n+ 1] + xs[n]) +B (us[n+ 1] + us[n]).
En insérant cette formule dans le calcul de x̃[n + 1], on obtient l’équation d’état. Enfin, l’équation de mesure s’écrit : ys[n] =

C xs[n] +Dus[n] = C P (P
−1

xs[n]−B us[n]) + (C P B +D)us[n] = 2C P x̃[n] + (C P B +D)us[n]
P10. D’après la formule (3.22).
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