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_ Préface

- Contexte

Qu’est ce qu'un signal ?

C’est une fonction du temps.

La figure ci-contre est une pression acoustique correspondant au mot
« Bonjour » par un certain locuteur.

L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000

— Qu’est ce que le traitement du signal ?
C’est reproduire automatiquement le traitement effectué par un expert :

— Electrocardiogramme (ECQG) : le patient est-il sain ou cardiaque ?

— Tension, courant, vibrations : le moteur présente-t-il un défaut ?

— Le signal contient-il des phénoménes périodiques ? De quelle période 7
— Morceau de musique : quelle est la partition ?

— L’outil fondamental est la transformée de Fourier.
D’une fonction du temps, on obtient une fonction de la fréquence.
L’idée de fréquence est naturelle :

— « LA » du diapason : 440 Hz

— Fréquences radio

— Réglage aigu/grave, égaliseur

— Dans le monde numérique actuel, un signal transmis, stocké, traité numériquement, a subi échantillonnage et
quantification : il est converti en une suite de 0 et de 1. On verra les effets de I’échantillonnage, passage du temps
continu au temps discret.

— D’autres outils, les transformées de Laplace et en z, sont plus généraux que la transformée de Fourier, on les
utilisera dans 1’étude des systémes.

— Qu’est ce qu'un systéme ? ] .
C’est une relation de cause a effet entre signaux. Entrées—— Systéme |—— Sorties
—_— | E—

— la température affichée par un thermométre par rapport & la température du milieu ambiant ;

— la trajectoire d’un robot marcheur par rapport aux couples fournis par ses moteurs.

— Modéliser un systéme, c’est en définir une représentation mathématique.
On se limitera ici aux systémes linéaires temporellement invariants (LTT), représentés par :

— fonction de transfert ;
— espace d’état.
— Pourquoi modéliser ?

Le modeéle (8’1l est correct) du systéme permet de prévoir, sans disposer du systéme, son comportement, c’est-a-dire
de le simuler. Les objectifs sont par exemple :

— les économies (une simulation est répétable) ;
— Dlaide a la conception (dimensionnement des actionneurs...).

— Comment simuler ?
Pour un systéme LTT et une entrée simples, on peut calculer la sortie & la main.
Dans les cas plus complexes, on a recours & des outils de simulation informatique.




TO=—
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Objectifs et moyens

A Tlissue de cette formation, on saura :

— échantillonner un signal ;

— en faire une analyse de Fourier;

— modéliser un systéme physique continu par le langage des fonctions de transfert ;

— modéliser un systéme physique continu par le langage de ’espace d’état ;

— lier les phénomeénes physiques aux paramétres de ces représentations (temps de réponse, stabilité) ;
— interfacer le temps continu et le temps discret ;

— simuler ces représentations a l’aide de logiciels adaptés.

Les travaux pratiques seront :

— la reconstruction d’une partition a partir de ’enregistrement audio-phonique ;

— le pilotage en simulation d’une navette spatiale, version trés simplifiée d’'un contrat avec ’agence spatiale
européenne.

On utilisera ’environnement de calcul Matlab, dans lequel est intégré I'outil de simulation Simulink,

ou 'environnement de calcul Scilab, dans lequel est intégré I'outil de simulation Xcos.

L’environnement de calcul Octave est presque équivalent & Matlab, mais ne dispose pas d’outil graphique de
simulation.

Sur Hippocampus, une introduction a Matlab ou Octave est disponible, avec exercices sur ordinateur, & réaliser en
autonomie avant le TD n°2.

On doit connaitre au préalable :

— les nombres complexes ;

— la dérivation et I'intégration d’une fonction d’une variable réelle a valeur réelle ;

on n’a pas a craindre leur extension aux fonctions d’une variable réelle a valeur complexe, les
mécanismes de calculs sont analogues; on n’a pas besoin de connaissances approfondies sur les
fonctions d’une variable complexe & valeur complexe ;

— les suites de nombres réels ou complexes ;
on n’a pas a craindre les quelques calculs élémentaires de séries;

— le calcul matriciel ;

— les valeurs et vecteurs propres, la diagonalisation d’une matrice carrée.

A Les formules seront cohérentes pour la dimensionnalité!

Le numéro ci-contre, numéro du transparent dans la projection, apparait dans le document imprimable.
On distinguera les mots importants,
les définitions et enumérations,
les points méritant une attention particuliére, £\
les animations, &
) . . P1
les preuves, uniquement dans le document imprimable,

les difficultés mathématiques. &

Abréviations
ssi si et seulement si

LTT linéaire temporellement invariant

P1....Et ces preuves sont en bas de page


https://autorobo.ec-nantes.fr/movie/video.php?file=sincomp.mp4

n Chapitre 1

Concepts et outils fondamentaux

2 1.1 Temps continu, temps discret

Un signal a temps continu est une fonction d’une variable réelle a valeur dans un ensemble X :

r:R— &
t— x(t)
t est le temps (l'origine des temps doit étre spécifiée, ¢ peut étre négatif).
La température en un endroit donné est un tel signal (X = R).

— Un signal a temps discret (ou série temporelle) est une suite de valeurs d’un ensemble X :

z = (z[n])nez

n est un indice temporel (par exemple, le n° jour depuis le 1 janvier 1970, n peut étre négatif).
Un signal & temps discret peut étre :

— intrinséquement & temps discret (I’heure du coucher du soleil) ;

— obtenu par échantillonnage temporel d’un signal a temps continu (la température a midi).
Pour tout n, x[n] est I’échantillon (sample) prélevé au temps discret n.

T3 Ne pas confondre :
— le temps, qui peut étre discret (n € Z) ou continu (¢t € R),
— et la valeur, qui peut étre discréte (X dénombrable) ou continue.

. . R . 1
Dans cette formation, les signaux sont & valeur continue complexe.

& Exercice 1. Dans la rubrique nécrologique d'un journal local, on peut lire qu'un général est décédé dans sa soixante-
quinziéme année. Quel est son age a son décés : 74 ans, 75 ans, 76 ans?

1. En pratique, les signaux sont & valeur réelle; la généralisation aux signaux complexes ne pose aucun probléme théorique.
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2 1.2 Voyage dans le temps

Soit x un signal. Diverses opérations créent un autre signal.

— Le signal renversé (ou retourné, ou réflechi) temporellement est :

t— x(—t) (z[-n)), (1.1)

— Le signal translaté (ou décalé) temporellement est (ty € R, ng € Z) :
t— x(t —tg) (z[n — ng))n (1.2)
(t',2(t')) a pour image (t' 4 to, z(t")). (n', z[n']) a pour image (n’ + ng, z[n]).
Selon le signe de ty ou ny :
— si tg > 0 ou ng > 0, le signal est retardé (décalé vers le futur) ;
— sitg < 0 oung <0, le signal est avancé (décalé vers le passé).
T5 En temps continu, le changement d’échelle de temps donne le signal (a € R) :
t (L) (1.3)

(t',2(t")) a pour image (at’,z(t")).
Soit a un facteur d’échelle adimensionnel préservant I'unité de temps :

— si |a|] > 1, le signal est dilaté le long de l'axe des temps (ralenti) ;
— si |a] < 1, le signal est contracté le long de 1'axe des temps (accéléré).

— En temps discret,
— Yinterpolation consiste & insérer N — 1 zéros entre les échantillons (N € N*) :

T || si % estentier
zpn[n] = {0 3] N (1.4)
sinon

(n,z[n']) a pour image (Nn’,z[n']); il y a bourrage de zéros
— la décimation consiste & ne conserver qu’un échantillon sur N :
x n[n] = z[N n] (1.5)

si "ﬁ/ est entier, (n/,z[n']) a pour image (%, z[n']); sinon, il y a perte de données.

16 [ Exercice 2. Soit la transformation du signal « définie par t — x (*="2) (a est adimensionnel).

a) Quelle est I'image du point (¢, z(t"))?
b) Pour le signal ci-dessous, tracer le signal transformé avec la translation (a, ty) = (1, —2s), le changement d'échelle

(a,ty) = (2,05s), et (a,tg) = (2,—25).

no

z(t)

—~2 2 2
® o
[N}

T1 W M
1 -1
%0 0 0

]
]

T2 [n]

N
—
8

o
o
)
=
=X }

8§ —4 0 4 § 12 16 -1 O 1 2 3 4
n n n
A Pour tout signal a temps discret , pour tout N € N* :

— T4NIN = T,
— xyntv =T 14y avec 1 la suite constante égale a 1.
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1.3 Fonctions et suites élémentaires

En traitement du signal, on cherche une représentation mathématique des phénomeénes observés, qui peut étre faite
dans un domaine non temporel.

Dans les sections suivantes, on définit :
— dans le cas continu, des fonctions ¢ — z(t) ou 6 — z(0) d’une variable réelle (€ R) notée ¢ ou 6,
— dans le cas discret, des suites (z[n]),,, fonctions d’une variable entiére (€ Z) notée n,
avec les conventions de notation suivantes :
— t ne désigne pas nécessairement le temps;
— 0 est adimensionnelle ; 2
— n n’est pas nécessairement un indice temporel ;
— n est adimensionnel ;>
— T est un paramétre réel positif, homogéne a ¢. 4

— N est un paramétre entier positif.

2. Une unité peut étre sans dimension, comme le radian. exp, sin, cos s’appliquent & des variables adimensionnelles.
3. Comme spécifié dans le systéme international d’unités pour les grandeurs de comptage.
4. Avec une fonction 6 — z(6), on définit une nouvelle fonction t — % x(%) de méme intégrale.
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1(t)=1
2
=9
L
0 t
— Echelon®
0 sit<O
step(t) =
p(t) {1 sit>0
2
0
0
t
T10 Rampe
) 0 sit<O
ram =
P t sit>0
S @'\/
o, e&
§ <
0
0
t

I

T11 Fenétre rectangulaire

.5.10...............1
L]

0 n
0 sin<O
steplnl =101 s o
2
=
El~ 00000004
5]
%
fooseoees 0
n
0 sin<0
ramp{n] = n sin>0
z .
= .
Y o
0 -------

La rampe est la primitive, ou la somme cumulée, de ’échelon s’annulant en —oo.
Inversement, 1’échelon est la dérivée, ou la différence & droite, de la rampe.

step(7) d 7 = ramp(t)

__ d ramp

step(t) = ——(t)

1 s — 1 1
rect(@):{ si —5<0<3

2

0 sinon

1

rect(4)

0

T12 Fenétre triangulaire6
tri(6)

2

_T T
2, 2
= max(1 — |6],0)

e
1~

tri(

0

N

=T T
t

n—1

Z step[k] = ramp[n]

k=—o0

step[n] = ramp[n + 1] — ramp[n]

1 si0<n<N-1

0 sinon

recty[n] = {

1+ o000

recty[n]

| o-0-0-0

bartlettN[n] = max(l _ % n — %} 7O)

bartlettg[n]
—
T
°
o

(es)
p
p
p
>
p
p
p
p

S
(SR
-3

(1.6)

(1.8)

(1.9)

(1.10)

(1.11)

A Les suites rectangulaire et triangulaire ne peuvent étre rendues paires par translation sur n que si N est impair.
La suite triangulaire de Bartlett n’atteint 1 que si N est impair.

5. Dit échelon de Heaviside dans le cas continu.
6. Il existe plusieurs conventions pour les suites triangulaires, la convention de Bartlett est indiquée ici.
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& Exercice 4. Exprimer (sans intégration) la rampe avec |'échelon, puis avec la fonction max. Exprimer les fenétres
rectangulaire et triangulaire (cas continu) sous la forme d'une somme d’échelons ou de rampes.

m3 1.4 Impulsion et peigne impulsionnel

Pour les fonctions d’une variable réelle, on introduit 'impulsion et le peigne de Dirac.
Pour les suites, on introduit 'impulsion et le peigne de Kronecker.

— Une définition rigoureuse de I'impulsion de Dirac nécessite la théorie des distributions. &
On se contentera d’une approche intuitive, construite sur la fonction de Gauss, 7
d’intégrale 1, infiniment dérivable : %
2 —4 0 4
gauss(d) = \/% exp(—%) (1.12) 9
L’impulsion de Kronecker ne pose pas de difficulté mathématique.
T14 Les impulsions de Dirac et de Kronecker sont définies par :
oo sit=0 oo 1 sin=0
® o= _ avec / S(t)ydt=1 §[n] = _ (1.13)
0 sinon o 0 sinon
2
S E 1+ ®
o I o
0 lleseesscs cosncss
0 0
t n

Bt % rect (%) ett— % gauss (%), d’intégrale 1, tendent vers I'impulsion de Dirac quand T | 0. =

T15 Intégrer, ou sommer, 'impulsion sur un intervalle contenant l'origine donne 1 (0 dans le cas contraire).

Donc, I’échelon est la primitive, ou la somme cumulée, de I'impulsion s’annulant en —oo.
Inversement, 'impulsion est la dérivée, ou la différence & gauche, de 1’échelon. &

[ §(r) d 7 = step(t) > 4[k] = step|n]

oo (1.14)
d step
o(t) = 1 (t) 0[n] = step[n| — step[n — 1]
T16 L’impulsion de Dirac de poids a € C en t; est t — « §(t — tg) ; -~

son intégrale vaut c. o l

Elle est représentée par une fléche en ¢, de longueur proportionnelle a |a|, d’angle T F ’

arg(«) par rapport a ’axe réel. to
Ci-contre, & € R™, le facteur arbitraire de proportionnalité est % t

® L’impulsion de Dirac est la dérivée de I’échelon. Plus généralement, si une fonction a une discontinuité en un
point, sa dérivée y présente un Dirac de poids égal au saut.

® L’impulsion de Dirac peut étre infiniment dérivée. Sa dérivée premiére est le doublet. &
Intuitivement, le doublet est infiniment grand positif juste avant 0, infiniment grand négatif juste apreés 0.
De méme, les dérivées répétées sont infiniment grandes dans un proche voisinage de 0.

At5(t) =0, et est sans dimension.
Soit a € R™. ¢ — 0 (L) est une impulsion de poids |a| : § (£) = |a| §(¢)

1 t
a a


https://autorobo.ec-nantes.fr/movie/video.php?file=rect2dirac.mp4
https://autorobo.ec-nantes.fr/movie/video.php?file=dirac4.mp4
https://autorobo.ec-nantes.fr/movie/video.php?file=doublet.mp4
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T17 Le peigne de Dirac et le peigne de Kronecker sont des versions périodisées de I'impulsion 7

+o0 too
)= > 60—k Linln]= Y dn—kN] (1.15)

k=—o0 k=—o00

. 2

>,

E '—ilu— ° * o °

HlEO I T T T H() eoo'oee'0o0elooe

—-37T-2T7 -T O T 2T 37T -8 —4 0 4 8
t n

At~ % I (%) est le peigne de Dirac T-périodique, somme d’impulsions de poids 1 espacées de T
1,y est le peigne de Kronecker N-périodique, somme d’impulsions d’amplitude 1 espacées de N.

118 & Exercice 5. Tracer la primitive du peigne de Dirac T-périodique nulle en ¢t = —%.

7. La notation du peigne de Kronecker indique que le peigne s’obtient par interpolation de la suite unité (voir page 2).
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1.5 Convolution

Soit x et y deux fonctions d’une variable réelle, ou deux suites; leur produit de convolution z * y est une
fonction d’'une variable réelle, ou une suite, définie par :

+o0 too
( *y)(t) :/ z(r)y(t —7)dr (@xy)ln] = Y alklyln—k] (1.16)

- k=—oc0
La convolution est commutative, associative, d’élément neutre ¢ :
TRY=Y*T
(z*y)xz=xx(y*z) (1.17)

T*k0=x

Cette derniére propriété (x * 6 = x) constitue la propriété d’extraction 8

+o0 +o0o
/ (1) §(t—7) d7 = =(t) Z x[k] 6[n — k] = z[n] (1.18)
—o° k=—o0

La convolution avec ’élément neutre décalé décale :°
(s 3t~ 1)) = (t > (t — 1)) 2 % (8n — nol)n = (eln — no) (1.19)

On peut modéliser un électro-cardiogramme par une convolution entre un signal de support fini (représentant la
suite des ondes PQRST lors d’un battement) et un train d’impulsions (caractérisant la régularité des battements). &

Si x et y sont périodiques de méme période (7' en continu, N en discret), leur produit de convolution
circulaire z ® y s’écrit :

T N-1
@on® = [ ayt-7) dr (@@ ynl = Y alk]yin — K] (1.20)
0 k=0

Ce produit est périodique, de méme période.
La convolution circulaire est commutative et associative.
L’élément neutre est ¢ — 7. III(%) en continu, 1,y en discret.
La convolution circulaire avec 1’élément neutre décalé décale :

T® (t’_> % Hl(t_TtO)) = (tHx(t_tO)) ‘r@(lTN[n_nO])n: ($[n_n0])71, (121>

& Exercice 6. Tracer sur le méme graphique 7 + rect(7) et 7 + rect(t — 7) dans les 4 cas suivants : t < —1,
-1<t<0,0<t<1, 1<t Exprimer rect*rect.

1.6 Causalité, anticausalité

Une suite est dite causale si elle est nulle pour n < 0.
Elle est dite anticausale si elle est nulle pour n > 0.

L’impulsion de Kronecker est causale et anticausale.
Une suite peut n’étre ni causale, ni anticausale.

Pour les fonctions d’une variable réelle, la définition mérite plus d’attention.

® Une fonction est causale si elle est nulle pour t < 0 et n’a pas de dérivée ' de Pimpulsion de Dirac en t = 0.
Elle est anticausale si elle est nulle pour t > 0 et n’a pas de dérivée de I'impulsion de Dirac en t = 0. 1

L’impulsion de Dirac est causale et anticausale.
Ses dérivées répétées ne sont ni causales ni anticausales.

L . \dk(;_ L sz . . [too dké _dkx
8. Cette propriété est généralisable a ;¢ 3 par récurrence, en intégrant par parties : f_oo (1) S (t—7)dT = F£(t)
t

dt dt®
9. tg € R, ng € VA
10. D’ordre > 1.
11. En effet, le doublet est infiniment grand positif juste avant 0, infiniment grand négatif juste aprés 0.
De méme, les dérivées répétées sont infiniment grandes dans un proche voisinage de 0. B


https://autorobo.ec-nantes.fr/movie/video.php?file=demove2.mp4
https://autorobo.ec-nantes.fr/movie/video.php?file=doublet.mp4
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1.7 Sinus cardinal, noyau de Dirichlet

Sinus cardinal ) 1
sin(m 5i 0 0 §
sinc(f) = ™0 b? 7 (1.22) S0 ~— \
1 sif=0 =
o | |
Il est & valeur réelle, et pair : sinc(—6) = sinc(0). 174 3910 1 2 3 4
Il s’annule pour tout entier non-nul : sinc(n) = é[n]. 9
® On admet qu’il est d’intégrale 1. C’est I’intégrale de Dirichlet.
Noyau de Dirichlet
sin(Nwf) —jn(N-1)6 .
= € sifd¢gZ
D~ (6) = sin(7 0) 1.23
w() {N sifez (1:23)

Il s’annule pour tout multiple de + non entier : Dy (%) = N 1;y/[n].

Il est 1-périodique, d’intégrale 1 sur une période.

Il est & valeur complexe, et hermitien : Dy (—6) = Dy (6).
)

La fonction 6 — Dy (0) + Dy(—0) — 1 est a valeur réelle, paire, 1-périodique, d’intégrale 1 sur une période, sa
valeur absolue est le module de Dy ;.

Les figures ci-dessous représentent les fonctions de méme module 6 — Dg(6) et 6 — D5(6) + D5(—6) — 1.

= 9
|
* 3
@5 e = 0 D> O
50 AR AR AV
& -5 ~
1 \\5* _ \,//ff’/s Qm_g
0 ! -1 0 1
R(Dao(0)) 9
1.8 Quatre formules fondamentales
® On admet qu’au sens des distributions : & &
Jim £ sine(L) = §(¢) NLiI}rlOO Dy (0) + Dy(—0) — 1 = 111(6) (1.24)
Or, on montre facilement que :
1 +ﬁ j2m ft = j2m kO
L sinc(4) :/ L df Dy(0) =) ¢ (1.25)
2T k=0

On vient d’admettre les formules ci-dessous sur I’impulsion et le peigne de Dirac;
Leurs équivalents pour ’impulsion et le peigne de Kronecker se démontrent sans difficulté.

® Dirac Kronecker
+oo | +3 . N
Impulsion i) = / Jd Ity on] = / el 2TAT ) (1.26)
o -1
“+00 ) . N—-1 )
Peigne + (%) =+ Z Ik T Ly = % RN (1.27)
k=—00 k=0

Ces 4 formules constituent la synthése des impulsions et peignes par une somme de sinusoides complexes (page
9) ; les paramétres de ces sinusoides sont obtenues par analyse de Fourier :

— la transformée de Fourier (Z,

cc)

page 10) de I'impulsion de Dirac est la fonction 1;

— la décomposition en série de Fourier (E,, page 21) du peigne de Dirac est la suite 1;
— la transformée de Fourier (%, page 12) de I'impulsion de Kronecker est la fonction 1;
— la transformée de Fourier discréte (J,, page 21) du peigne de Kronecker est la suite 1.


https://autorobo.ec-nantes.fr/movie/video.php?file=sinc2dirac.mp4
https://autorobo.ec-nantes.fr/movie/video.php?file=diric2comb.mp4
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Chapitre 2

Signaux : les voir autrement

On présente deux types de transformation :

— du temps continu vers le temps discret (vue partielle), pour le traitement numeérique;;

— du domaine temporel vers le domaine fréquentiel (autre point de vue), pour Uinterprétation, en s’appuyant
sur la notion de sinusoide complexe.

2.1 Un signal fondamental : la sinusoide complexe

La sinusoide complexe & temps continu est définie par :
t— Al CmIthe) (2.1)
avec :
— A e R" lamplitude,
— ¢ € R la phase initiale,
— f € R la fréquence.

La figure montre 5 répétitions pour f > 0. &
A Si t est exprimé en seconde, f est exprimé en Hertz (cycle par seconde, tour par seconde).

A Ce signal est périodique, % est la période (en seconde si f est en Hertz).
Si f > 0, le sens de rotation est le sens trigonométrique.
Si f < 0, le sens de rotation est le sens des aiguilles d’une montre.

La sinusoide complexe & temps discret est définie par :
(AT (22)
avec :
— A € R" 'amplitude,
— ¢ € R la phase initiale,
— X €R la fréquence (normalisée, ou réduite).

Sur la figure, A = 0.04 cycle/sample. &

A La fréquence est adimensionnelle, définie modulo 1, on peut 'exprimer en cycle par échantillon (tour par
échantillon, cycle per sample).

A La suite est périodique ssi A € Q. On prend ) dans | — %, %}, et on exprime la fraction irréductible : la période

(en sample) est le dénominateur, le nombre de cycles pour la parcourir dans le sens trigonométrique est le
numérateur.

& Exercice 7. Quelle est la période, et le nombre de cycles pour la parcourir, pour les fréquences ci-dessous 7

A (cycle/sample) | période (sample) | nombre de cycles
0.040
0.042
0.958
/100

j (27 X n+to)

1. S’il existe k € Z tel que N=A+tk:e =l 2TANT9) o prend en général la valeur dans | — %, %}

9


https://autorobo.ec-nantes.fr/movie/video.php?file=sincomp.mp4
https://autorobo.ec-nantes.fr/movie/video.php?file=sincompd.mp4
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2.2 Transformation de Fourier (temps continu)

On a considéré les signaux sous forme d’une représentation temporelle :

z:R—C
t— x(t)
Cependant :
— on distingue les sons graves (basse fréquence) des sons aigus (haute fréquence) ;

— le marin distingue la houle (basse fréquence) du clapot (haute fréquence) ;

— la suspension d’une voiture ne réagit pas de la méme maniére au pavé (basse fréquence) qu’au grain fin du
macadam (haute fréquence).

Ces exemples montrent I'intérét d’une décomposition fréquentielle (ou spectrale).

La transformée de Fourier £ x d’un signal = est une fonction de la forme :

Fx:R—C
[ Za(f)
définie pour tout f par :
+oo .
Fa(f) = / 2(#)e 92 gy (2.3)

A Si t est homogéne & un temps, alors f est homogéne a une fréquence.
. transforme une fonction d’un temps continu en une fonction d’une fréquence continue (indice ).

® On admet que la transformée de Fourier existe (I'intégrale converge) si le signal est absolument sommable.
L’extension aux signaux sinusoidaux est possible grace a la théorie des distributions.

Connaissant J_x, on peut reconstruire x par la transformation de Fourier inverse P
o0 .
wt)= [  FEa(f)e* M df (2.4)
—0o0
En faisant apparaitre le spectre d’amplitude |E z| et le spectre de phase arg(F.z) :
o0 . )
z(t) = / \Ex(f)| & (27 f t+arg(Z(F))] g f (2.5)
—0o0

La transformation de Fourier décompose donc un signal x en une somme de
sinusoides complexes :

de fréquence f
d’amplitude | Ex(f)] df
de phase initiale arg(E.z(f))

La transformation de Fourier effectue une analyse spectrale.

Pour un signal & valeur réelle, le spectre d’amplitude est pair, le spectre de phase impair. Donc :

+oo
£(t) =2 / Ea(f)] cos [2n £ ¢ + arg(Ea(f))] d f (2.6)

La transformation de Fourier décompose donc un signal x a valeur réelle en une somme de cosinus :

de fréquence f=0
d’amplitude 2| Ex(f) df
de phase initiale arg(FE.z(f))

Pl.f]c-'cx(f)ej%ftdf:ffx(u)e7j2ﬂfu du el 277t df = [z(u) fej2ﬁf<t7u) df du=z(t)
[ —7
e (f) (t—u)
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2.3 Transformation de Laplace bilatére

La transformée de Fourier n’existe pas toujours ('intégrale de la formule (2.3) ne converge pas).
La transformation de Laplace bilatére la généralise, avec des conditions d’application moins restrictives.

La transformée de Laplace L2 d’un signal x est une fonction de la forme :

Lz:C—C
s +— La(s)

définie pour tout s € C telle que I'intégrale ci-dessous converge par :

+oo
La(s) = / z(t)e " dt (2.7)

— 00

s € C est un pole de la transformée de Laplace de = si lim,_,, Lz(s) = oo.
Il n’y a aucun pole dans le domaine de convergence.
La partie réelle d’un poéle peut étre 400 ou —oo.

&

Si le domaine de convergence est non vide, c’est une bande verticale, les abscisses 7/
des droites frontiéres sont les parties réelles de poles.

Pour un signal causal, c’est un %—plan droit et il n’y a pas de pole en +oo. 2

Pour un signal anticausal, c’est un %—plan gauche et il n’y a pas de pole en —oc. 3

Z

Si 'axe imaginaire est dans la bande de convergence, le signal a une transformée de Fourier ; pour tout f :

Fw(f) = Lx(j2m f) (2.8)

cc

® Le domaine de convergence peut avoir pour frontiére I’axe imaginaire.
11 peut se réduire a I'axe imaginaire.
Le traitement rigoureux nécessite la théorie des distributions.

& Exercice 8. Soit = et y les signaux paramétrés par la constante complexe a ; pour tout ¢ :
z(t) = e " step(t) y(t) = —e =" step(—t)
a) Calculer leur transformée de Laplace.
b) Admettent-il une transformée de Fourier. Si oui, quelle est son expression ?
A Tlissue de cet exercice, on constate que :
— ces 2 signaux ont la méme expression de la transformée de Laplace, mais pas le méme domaine de convergence ;
— —a est 'unique péle de leur transformée de Laplace ;
— la frontiére entre leurs domaines de convergence est la droite verticale {s | R(s) = —R(«a)};
— seul I'un des deux admet une transformée de Fourier (selon le signe de R(«)).
Pour calculer une transformée de Laplace inverse, il faut spécifier le domaine de convergence. 4

® Pour étre une transformée de Laplace, une fonction d’une variable complexe doit étre holomorphe.
Elle doit donc étre continue, indéfiniment dérivable dans l'intérieur de la bande de convergence.
Par exemple, s — |s| n’est pas une transformée de Laplace.

2. Pour un signal non-causal mais qu’un retard peut rendre causal, il y a un pdle, donc une frontiére en +oo.

3. Pour un signal non-anticausal mais qu’une avance peut rendre anticausal, il y a un poéle, donc une frontiére en —oo.

4. On choisit o € R tel que {s | R(s) = o} soit dans la bande de convergence; f — Lz(c + j 2w f) est la transformée de Fourier de
t— ;v(t)e_”. Par transformée inverse, on obtient, pour tout ¢ : z(t) = fjooj Lx(o+ j27f) eloti2mf)t d f. C’est la formule de
Bromwich-Wagner.
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2.4 Transformation de Fourier (temps discret)

On a considéré les signaux sous forme d’une représentation temporelle :

z = (z[n])nez

Comme pour les signaux & temps continu, une decomposition spectrale est possible.

La transformée de Fourier £ x d’un signal z est une fonction de la forme :

fr:R—C
A Fa(A)
définie pour tout A\ par :
+oo
Ex(\) = Z z[n]e I 2T (2.9)

A ) est adimensionnel et a une interprétation de fréquence réduite. J_z est 1-périodique.
J. transforme une suite en une fonction d’une fréquence continue (indice 4).

® On admet que la transformée de Fourier existe (la série converge) si le signal est absolument sommable.
L’extension aux signaux sinusoidaux est possible grace a la théorie des distributions.

Connaissant J, x, on peut reconstruire x par la transformation de Fourier inverse P2
+2 . A
a[n] = Ex(A) e A" d A (2.10)
-4
En faisant apparaitre le spectre d’amplitude | z| et le spectre de phase arg(f.z) :
+}
x[n] — / |]§ ( )‘ j 27 An+targ(F.(N))] d\ (211)
1
3

La transformation de Fourier décompose donc un signal z en une somme de sinusoides complexes :
de fréquence A
d’amplitude [Fz(N)] dA
de phase initiale arg(K,x(\))

Pour un signal a valeur réelle, le spectre d’amplitude est pair, le spectre de phase impair.

= o=

] 1 ] ) 1.
]‘;CCC(A)GJ 2T An dA:f"FlQ me[m} 67]27r)\m & 2T An d)\ = Zm z[m] f+12 & 27 XA (n—m) d/\:x[n}
-2 32

Tz ()

p2. [°

[N

d[n —m)]
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2.5 Transformation en z bilatére

13

La transformée de Fourier n’existe pas toujours (la série de la formule (2.9) ne converge pas).
La transformation en z la généralise, avec des conditions d’application moins restrictives.

La transformée en z d’un signal a temps discret x, notée Zx, est une fonction de la forme :

Zz:C—C
z— Zz(z)

définie pour tout z € C telle que la série ci-dessous converge par :

+oo

zy € C est un pole de la transformée en z de z si lim,_,, Zz(z) = oo.
Il n’y a aucun poéle dans le domaine de convergence.
Le module d’un péle peut étre 0 ou +oo.

Si le domaine de convergence est non-vide, ¢’est un anneau centré sur 0, les rayons
intérieur et extérieur sont les modules de poles.

Pour un signal causal, c’est 'extérieur d’'un disque et il n’y a pas de péle infini. g

Pour un signal anticausal, c’est un disque et 0 n’est pas un poéle. 6

(2.12)

&

7

N

N

. LT . , .
Si le cercle unité ' est dans ’anneau de convergence, le signal a une transformée de Fourier ; pour tout A :

Fa(N) = Za(d ™)

® Le domaine de convergence peut avoir pour frontiére le cercle unité.
II peut se réduire au cercle unité.
Le traitement rigoureux nécessite la théorie des distributions.

(2.13)

Tas & Exercice 9. Soit z et y les signaux paramétrés par la constante complexe «; pour tout 7 :

z[n] = " step[n] y[n] = —a™ step[—n — 1]

a) Calculer leur transformée en z. Rappel : si 8 # 1 et ny < ny, Zn:no

b) Admettent-il une transformée de Fourier 7 Si oui, quelle est son expression 7

— A lissue de cet exercice, on constate que :

ng _ n1+1
ny ﬁn _ B 1_ﬂB

— ces deux signaux ont la méme expression de la transformée en z, mais pas le méme domaine de convergence ;

— « est 'unique pole de leur transformée en z;
— la frontiére entre leurs domaines de convergence est le cercle {z | |z] = ||} ;

— seul 'un des deux admet une transformée de Fourier (selon la valeur de |al).

— Pour calculer une transformée en z inverse, il faut spécifier le domaine de convergence. 8

5. Pour un signal non-causal mais qu’un retard peut rendre causal, il y a un pdle infini, donc une frontiére a l'infini.

6. Pour un signal non-anticausal mais qu’une avance peut rendre anticausal, il y a un pole en 0.
8. On choisit p € R tel que {z | |z] = p} soit dans l’anneau de convergence; A\ — Zz(pe

(z[n] p~")pez. Par transformée inverse, on obtient, pour tout n : x[n] = [

j27r)\)

est la transformée de Fourier de

1 . .
+f Zw(pej 27r)\) (pe] 271')\)71, dx
2
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2.6 Propriétés des transformations

Dans cette section :

— Les démonstrations sont en général fournies en temps continu,
la transposition au temps discret est laissée en exercice;
— X, désigne le domaine de convergence de la transformée de Laplace ou en z du signal x;

— les formules s’entendent pour tout temps ¢ ou n, toute fréquence f ou A, tout s ou z dans le domaine de
convergence indiqué.

Les propriétés fondamentales sont : la linéarité, I'effet sur la convolution, P3 Veffet sur le produit. Pd

Si z et y sont deux signaux & temps continu, a € C.

Linéarité L(x+y)=Lx+ Ly Yoty D8, NY, (2.14)
L(az)=ala S = 3,

Convolution L(zxy)=LxLy Yoy DX, NIy (2.15)

Produit F(xy)=FxxFLy (2.16)

Si z et y sont deux signaux & temps discret, a € C.

Linéarité Zxz+y)=Z2z+ Zy Yoty DX, NY, (2.17)
Z(azx)=aZzx Sow = 2y

Convolution Z(xxy)=Zz 2y Yy DBy NIy (2.18)

Produit’ E(xy)=FKEx®Ey (2.19)

Les formules ci-dessous donnent 'effet de la translation temporelle, P5 de la modulation. '°

Si x est un signal & temps continu, t; € R, sq € C, f € R.

Translation  y(t) = x(t — tg) Ly(s) = e *" La(s) ¥, DX, N{s|R(sty) = —o0} (2.20)
Modulation  y(t) = z(t)e*’ Ly(s) = £Jc(s — Sg) Y, ={s+s0|s€%,}
y(t) =z(t) !> Fy(f) = Falf - fo) (2.21)

Si x est un signal a temps discret, ng € Z, 2z, € C, Ay € R.

Translation  y[n] = x[n — ng) Zy(z) =2"" Zx(2) ¥, D8, N{z]z" =0} (2.22)
Modulation  y[n| = z[n] zy Zy(z) = Za(zz ") Y, ={z2|2z€X,}
yln] = afn]e’ ™" Fy(\) = Fr(A = o) (2.23)

Les formules ci-dessous donnent l’effet du changement d’échelle ou de I’interpolation. P

Si x est un signal a temps continu, a € R.

Echelle y(t) = ﬁx (%) Ly(s) = Lx(as) Y, ={2seX,}
Fy(f) = Falaf) (2.24)

Si x est un signal a temps discret, N € Z.

Interpolation ran(n] = z[y]si§ €2 Zain(z) = Za(2Y) Y = {z% |z€ X}
p TWEET 0 sinon TN TeN T z
Ferrn(A) = Ba(NA) (2.25)
P3. L(z*y)(s f+°° f+°° yt—7)dre ®! dt:fj(:::v(T)e_ST szy(t—’r)e_s(t_ﬂ dt d7 = Lx(s) Ly(s)
(@) (1) £y(s)
4 (Fa+ E)(f) = [1 2 Foalo) Bu(f = 9) dg = [T 12 [* T a(u)y@)e 279 e 2T U= dr du dg

f+°°f+°°x(u)y f+°o —32mg(u=t) dge 2 St dtdu:fj_oojy(t) fj;:x(u) S(u—t)du eIt gy

§(u—t) =(t)
9. Il s’agit de la Convolutlon circulaire pour les fonctions 1-périodiques.
P5. L(t — z(t —tg))(s f+°° (t—tg)e P dt= fj;f z(u)e * (utt0) gy = o710 fj':; z(w)e **du=e °" La(s)
P6. L(t — z(t)e®? )(s [t (t)esot At = [T a)e U At = La(s — s)
PT.L(t—x (L)) (s) = f:r;: z (%) e *t dt =|qf fj:oo z(u)e” “*" du = |a| Lx(as)
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750 Les formules ci-dessous donnent 'effet sur un signal & temps continu de la dérivation, P8 de Pintégration. o
d
Dérivation x(t) = d—j(t) Li(s) = sLax(s) Y DX\ {s|R(s) = £oo} (2.26)
t
1
Int. causale X(t) = / z(r)dr  LX(s) = - Lx(s) Yx DX, N{s|R(s) >0} (2.27)
oo s
t
1
Int. anticausale X (¢) = / x(r)dr  LX(s) = - Lx(s) Yx DX, N{s|R(s) <0} (2.28)
+o0 s
On observe 2 cas particuliers de la translation temporelle d’un signal & temps discret : I’avance d’un pas, le retard
d’un pas.
Avance y[n] = z[n + 1] Zy(z) = z Zx(z) ¥, DX, \{z] |2| = +o0} (2.29)
Retard y[n] = z[n — 1] Zy(z) = 27" Za(2) ¥, D ¥, \ {0} (2.30)

751 L’énergie d’un signal x est définie par :

+o0 too
[ () di S ol (2.31)

Ex(N)[?) est appelée densité spectrale

dc

2(f)” (ou A —

— Le théoréme de Parseval explique pourquoi
. . ’a . . PI0
d’énergie, ou spectre d’énergie :

+o0 +o0 too
/ ()] dt = / Ea(f)2 df S Janll? = / (V)2 dA (2.32)

—o00 0o n=—o0

Nl=

152 & Exercice 10.
a) Calculer la transformée en z de I'impulsion de Kronecker.
b) On considére le signal a temps discret défini par :

o] {1 sine{l,2,3}

0 sinon

Calculer sa transformée en z en revenant a la définition de la transformation en z.
c) On considére le signal a temps discret défini par :

y[n] =d[n — 1]+ 6[n — 2] + 6[n — 3]

Calculer sa transformée en z en utilisant les théorémes.

53 2.7 Quelques transformées

L’obtention des transformées des impulsions de Dirac et de Kronecker est immédiate :

Léi=1 Z6i=1 (2.33)
— La transformée de Fourier des fenétres rectangulaires & temps continu et & temps discret sont P
. rect = sinc E recty =Dy (2.34)

Les formules suivantes s’entendent pour tout temps ¢ ou n, toute fréquence f ou A, tout s ou z dans le domaine de
convergence indiqué.

P8. Li(s) = f+°° p(t)e °t dt = [ e T2 4+ ssz z(t)e *" dt = s La(s) car lim,_, .o z(t)e *" =0 pour que La(s) existe.
P9. LX(s) = f+oof x(r)e” * det:fj;ofjoox(T)efstdth:fj;ox(T) f+°oe75tdt dr
—_—

%e 7T si R(s)>0
P10. Soit y : t o (=) Bl xy)(f) = Ealf) Ey(f) = Ea(f) [Ea(f)]” = [Fa(f)*. Done, par Fourier inverse, (z + y)(0) =
[\ Ea(f)? d f. D'autre part, (x*y)(O) fjjjx(t)ym—t dt—fjjjxt) () dt = [T |a(t))? dt.
N
P11. Pour tout z ;é 1: Zrecty(z) = ij:ol P 1171
) e J2TAN —JjmAN  jrmAN_ —jmAN —imA(N—=1 AN
Donc, pour tout A non entier : i, rectpy (A) = 11 e = e,jﬂx((zejﬂx_:,jwk) ) = 7™ ) % Dy (N)
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P12 P13

Par récurrence sur k € N*, on calcule les transformées de Laplace et en z ci-dessous (a € C).

Temps continu :

o z(t) = e “" step(t) La(s) = = R(s) > —R(«a)
o z(t) = (szll)! "t e™ " step(t) Lx(s) = (s+1a)’” R(s) > —N(«
Echelon Lstep(s) =+ R(s)

Rampe Lramp(s) = g% R(s) >0

Temps discret :

e z[n] = a" step[n] Zx(z) = ﬁ |z] > |
o z[n] = ("*1) " step[n] Zx(z) = m |z| > |
Echelon Zstep(z) = # |z| > 1
Rampe Zramp(z) = ﬁ |z] > 1

755 Pour les signaux suivants, le domaine de convergence de la transformée de Laplace ou en z se réduit a I'axe

T56

imaginaire (Laplace) ou au cercle unité (z) :

.. Pl4
— la constante unité,

. o P15
— la sinusoide complexe,

— le peigne de Dirac ou de Kronecker. 10°P16

Temps continu :
Constante 1(t) =1 E1(f) =4(f)
Sinusoide complexe z(t) = el 2™ ot Fx(f)=46(f — fo)
Peigne de Dirac z(t) =+ H(%) =3, 6t —kT) Ea(f)=1UT f)

Temps discret :
Constante 1n] =1 FE.1(N) =1III(N)
Sinusoide complexe zln] = e 2™ ron Ex(A) =TI\ — )y)
Peigne de Kronecker Liy[n] =32, 0[n—kN] Flin(A) =TI(N A)

& Exercice 11. Ecrire la transformée de Fourier :
a) de la sinusoide ¢ — cos(27 fyt + @). &
b) de la sinusoide (cos(2m Agn + @)),ez-
¢) du noyau de Dirichlet Dy (rappel : Dy (0) = kN;Ol ol 2RO,

(2.43)
(2.44)
(2.45)

(2.46)

(2.47)
(2.48)

P12. Posons z(t) = ﬁ thlemo? step(t). En intégrant par parties, Lz q(s) = SJF% Lz, (s). Initialisation faite en exercice.
P13. Posons z[n] = (”zle) a" step[n]. On suppose la propriété vraie pour zj,. On dérive (2.40) : a 1,1),”1 =-7a 2 df:"’ (2).
-z
En reprenant la définition de la transformation en z et ’expression de xy, : d f:k (2) =— Z::E) nﬁ’z:‘f)l'), ™ 2772 En combinant

ces équations , on fait apparaitre naturellement xj_ ;. La formule (2.40) est vraie également pour .
P14. C’est une application directe des formulations (1.26) et (1.27) que 'on va réutiliser dans la preuve suivante.

P15. Sinusoide a temps continu : E z(f) = fj':; o fot Tt gy = fi: e I U=t gy = 5(f = fo)

Sinusoide a temps discret : F.x(X) = >, ol 2R gTI2mAN > e 2 (A =Ro)n (A — Xg)
10. La transformée du peigne de Dirac T-périodique est une suite d’impulsions de Dirac de poids % espacées de %
1

La transformée du peigne de Kronecker N-périodique est une suite d’impulsions de Dirac de poids ~

Pour le peigne de Kronecker, il faut aussi remarquer que = Zi\’;ol I — %) = ;:O_OO S\ — %)

espacées de %
P16. On utilise expression (1.27) du peigne, la transformée de la sinusoide, et la linéarité de la transformation de Fourier.


https://autorobo.ec-nantes.fr/movie/video.php?file=tfsinusreel.mp4
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57 2.8 Echantillonnage
Soit x un signal & temps continu.
On définit une suite croissante d’instants (t,),cz-
Le signal a temps discret xy = (24[n]),cz est définie pour tout n par : z[n] = z(t,,)
Le signal a temps discret est obtenu par échantillonnage (sampling) du signal a temps continu.
— En général, le pas d’échantillonnage t,, — t,,_; est constant. x(t) x4 [n)
Cette constante T, est la période d’échantillonnage. T,
Son inverse fy = % est la fréquence d’échantillonnage. '
On suppose de plus que £ = 0 est un instant d’échantillonnage ; on obtient donc, pour tout n :
zg[n] = x(nTy) (2.49)
— L’échantillonnage est nécessaire pour le traitement, le stockage et la transmission numériques.
Le choix de la fréquence d’échantillonnage dépend de I'application :
CD 44100 Hz (44100 échantillons,/seconde)
Glycémie en continu 0.0033 Hz (1 mesure toutes les 5 minutes)
758 Sur l’exemple ci-contre, le signal & temps discret représenté par des disques cor- o o
. . . . . L ]
respond & ’échantillonnage du signal a temps continu en trait plein. * e !
o
L L L L L T
0 1 2 3 4 6 7 8
t/T.
A Cet autre signal a temps continu donne le méme signal échantillonné! . o
[ ]
[ ]
[ ] \ J °
L L L L L L
0 1 2 3 4 6 7 8
t/T;
A Une information peut étre perdue!
® L o (] L L ] ® ®
L L L L L L
0 1 2 3 4 6 7 8
¢/,
759 Par convention :
— si x présente une discontinuité en ng T, alors x4[ng] prend la valeur aprés la discontinuité ;
— si o présente une impulsion de poids a en ng Ty, alors x4[ng] prend la valeur -
On peut donc écrire :
bo=710 step, = step ramp, = T, ramp (2.50)

L’échantillonnage préserve la dimensionnalité.

160 & Exercice 12. Soit I'échelon a temps continu step, retardé d'un temps 7, puis échantillonné a la période 7,. On pose

T =dT, — 1y, avec d entier et 0 < 75 < Tj.
a) Porter sur le schéma suivant I'échelon & temps continu retardé, puis son échantillonnage.
b) En déduire I'expression du signal a temps discret obtenu, avec I'échelon a temps discret, d, et 7. &

(d—2)T, (d—1)T, dT, (d+1)T,
— En reprenant les notations de I’exercice, et en supposant que le bus passe tous les multiples de T} :
— 7 est 'heure d’arrivée de 'usager a l'arrét de bus;
— dTj est I'heure ou il monte dans le bus;

— T, est le temps perdu a attendre le bus.

11. La période d’échantillonnage peut s’exprimer en second/sample, la fréquence en sample/second.


https://autorobo.ec-nantes.fr/movie/video.php?file=step-ech.mp4
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2.9 Théoréme d’échantillonnage de Shannon

Soit un signal a temps continu x, ne présentant pas d’impulsion.
On échantillonne a la période Ty (fréquence d’échantillonnage f, = 1/T),
On obtient le signal & temps discret x,; pour tout n :

xg[n] = x(nTy)

Connaissant le signal échantillonné x, est-il possible de reconstruire le signal d’origine = 7
Il est équivalent de se poser la question suivante : connaissant J x4, peut-on reconstruire J 7

Rappelons 'expression de ces deux transformées de Fourier ; pour tout f, et pour tout A :

+oo . +oo )
fcfc(f)z/ z(t)e 7t Fa N = 3 afn]e A

& Exercice 13. On cherche a établir un lien entre F x et F .
a) Echantillonner t — z(t)e 7" /" 3 la période T.
b) Approcher I'intégrale E z(f) par la méthode des rectangles & droite (on suppose que t — x(t)e ™’ amft

entre nT, et (n + 1) T, sa valeur échantillonnée a I'instant n Ty).

vaut,

L’échantillonnage entraine en général une perte d’information.
Cependant, sous certaines hypothéses, la relation obtenue dans I’exercice n’est pas approchée.

. . . P17
La formule sommatoire de Poisson donne % x, en fonction de E.x :

+oo
FEa(F)= X Ealf -k 1) (2.51)

k=—o0

La transformée de Fourier du signal échantillonné est, au facteur f, prés, la somme de la transformée de Fourier
du signal a temps continu et de ses versions translatées d’un multiple de f;.

A L’échantillonnage temporel entraine une périodisation spectrale.

Que se passe-t-il si le signal & temps continu est & bande limitée (la transformée de Fourier est nulle pour

sifo>2fra T65 si fo <2 frax
Spectre du signal continu Spectre du signal continu
e (f) e (f)
[ [
7fmax fmax 7fmax fmax
Répliques du spectre du signal continu Répliques du spectre du signal continu
(-Ex(f_kfs))kez (]c:;x(f_kfs))k Z
_fs _ I % fs _fs—% Is fs
Spectre du signal échantillonné Spectre du signal échantillonné
T, Kx(f T5) /\_/\_/\_/Ts Fea(f T
,AfAf fAfAf St B |
— b I —f I ] s
A R A (A A
Les deux spectres sont identiques sur la bande de On observe une déformation.
fréquence [—%, f7] Ce phénoméne est appelé repliement spectral

(spectral folding, spectral aliasing).

On en déduit le théoréme de Shannon :

i = fs s
si Fx(f) = pour tout f & {—7,7}
alors Ea(f) = + K (£) pour tout f € [~ §]

P17. Soit X défini par X (t) = x(¢t) LI(f,t). Alors :

e X = Jew x Jo(t = WI(t f)) = B X+ (f = TN T)) = 520 X () % (f = 0(F =k fo)) = (F = 2o Fe(f = K 1))
Mais X s’écrit aussi X (¢t) =Ty > zs[n] 6(t — nTy). Donc :

n

LEX() =[S, anlot —nT)e ?* ™ dt =3 an] [o(t—nT)e > at=3, an]e 7" = Ea (fT).

(2.52)
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La demi-fréquence d’échantillonnage % est appelée fréquence de Shannon, ou fréquence de Nyquist.

Considérons une sinusoide réelle de 70 Hz, échantillonnée & 65 Hz.
La condition de Shannon n’est donc pas vérifiée.
Le signal échantillonné semble étre une sinusoide de fréquence 5 Hz.

LMALAMALAIARL LN
IR

o 50 100 150 200 250 300
Temps (ms)

Le repliement spectral duplique le pic en 70 Hz a la fréquence 5 Hz.

[ (f)]

! by

65" 70
T | (f T5))

e thew
\5 65/ \70
Il n’y a pas repliement s’il y a au moins deux échantillons par cycle de la sinusoide a temps continu. = =

Le repliement spectral explique pourquoi, au cinéma, (échantillonnage & 24 images par seconde), la roue du véhicule
filmé semble tourner lentement, & ’envers, voire s’arréter.

Il peut étre recherché, comme, par exemple, dans le calage du point d’allumage d’un moteur a explosion par effet
stroboscopique.

A Mais, en général, on cherche a ’éviter. On utilise un filtre anti-repliement, filtre passe-bas qui 6te les hautes
fréquences avant échantillonnage.
Les phénomeénes hautes fréquences sont perdus, mais pas interprétés comme des phénoménes basse fréquence.

Si la condition de Shannon est vérifiée, on obtient, dans le domaine temporel, la formule d’interpolation de
Whittaker—Shannon : 7'
z(t) = st[n] sinc(t}LTs) (2.53)
nez

A On vient d’écrire le théoréeme de Shannon lors d’un échantillonnage.
Il existe un théoréme analogue lors d’une décimation, disponible en annexe (page 37).

& Exercice 14. On échantillonne une sinusoide réelle a la frequence 1000 Hz. Quelle fréquence voit-on lorsque la
fréquence de la sinusoide a temps continu est 100 Hz, 900 Hz, 1000 Hz, 1100 Hz?

P18. La formule (2.52) s’écrit, avec X (¢) = z(t) II(fst) : E.z(f) = 1/fs K.xs(f/ fs) rect(f/fs) d’ou le résultat par convolution.

FeX(f) Fe sinc(f—f)

c


https://autorobo.ec-nantes.fr/movie/video.php?file=sinusech2.mp4
https://autorobo.ec-nantes.fr/movie/video.php?file=sinusechson.mp4
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2.10 Blocage

Etant donné un signal & temps discret x, comment obtenir un signal & temps continu ?
On suppose l'intervalle de temps entre deux instants consécutifs égal a T,.
On utilise un bloqueur. On note :

— Timp le signal obtenu par blocage impulsionnel ;
— Z,on le signal obtenu par blocage d’ordre 0 (Zero Order Hold, zoh) ;
— g le signal obtenu par blocage d’ordre 1 (First Order Hold, foh).

Bloqueur impulsionnel

Timp est nul sauf aux instants n T, n € Z, ou il présente une impulsion : o . 11
+oo . .
Ty t) = zInl § t—n T, 2.54 R e
p(t) n;@[] (=) (2.54) T,
400 33[71] . Limp (t)
=T, Y a[n] 6(t—nTy) (2.55) T | WP
C’est un outil mathématique, irréalisable physiquement.La transformée en z de x
n’est autre que la transformée de Laplace de x;y,, ; pour tout s P19
L (s) = T, Zx(e® ™) (2.56)
Bloqueur d’ordre 0
Z,on €st bloqué a la valeur x[n] entre les instants n Ty et (n + 1) Ty. . PR G
+OO [ [
Tyon(t) = Z x[n] rect(it_;TS -1 (257) T —* T —*
+oo {I?[TL] xzoh(t)
= > (z[n] — z[n — 1)) step(t — nTy) (258) —— ] zoh ——

Le bloqueur d’ordre 0 correspond & un fonctionnement réaliste.

En effet, I’échantillonneur-bloqueur est un composant électronique, piloté par
une horloge de période T.

Conceptuellement, c’est un échantillonneur suivi d’un bloqueur d’ordre 0, qu'on
pourra séparer dans les schémas fonctionnels de la partie « Systémes ».

Bloqueur d’ordre 1

Zgon €St obtenu par interpolation linéaire. o ol
+00 . .
Tron(t) = z[n] tri(=2te) (259) T ———*
2 " /T,
1 = z[n] Ttoh (t)
=7 Z (z[n + 1] — 2z[n] + z[n — 1]) ramp(t — nTy) (2.60) — foh |
5 n=—o0o

A Le bloqueur d’ordre 1 connait le futur!

Plus généralement, un bloqueur est fondé sur une fonction ¢ telle que :

— le signal bloqué x}, est une combinaison linéaire de ¢ et de ses versions décalées d’un multiple de T} ;

— D’échantillonnage & T, de z, redonne le signal d’origine z.
¢ = step donne le bloqueur d’ordre 0, ¢ = ramp donne le bloqueur d’ordre 1, voir annexe (page 38).

A Un bloqueur suivi d’un échantillonneur redonne le signal & temps discret d’entrée.
Un échantillonneur suivi d’un bloqueur déforme le signal a temps continu d’entrée.

Le blocage préserve la dimensionnalité.

P19. Ly (s) = [T T, 2] 6(t —nTy) e  dt =T, 3, 2ln] [T6(t —nTy)e *  dt =T, 3, z[n] (*7*) ™"
N———

Timp (t) o1 Ty 2 Ts)
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15 2.11 Séries de Fourier, transformation de Fourier discréte

Soit x un signal & temps continu, 7T-périodique.

Son développement en série de Fourier est une suite définie pour tout k € Z par :

— Inversement, on reconstruit le signal, pour tout ¢t € R, par :

T : k
gjx[k]z/ z(t)ye 2Tl At (2.61)
0
P20
400 ) .
Z Fox[k] el 2T 7! (2.62)

k=—o0

Le signal est décomposé en une somme de sinusoides complexes (% Z,z[0] est la composante continue).

— F, transforme un signal & temps continu en une suite (indice oq).

La transformée de Fourier est constituée de raies spectrales localisées aux fréquences multiples de %

12

T76 Soit z un signal a temps discret, N-périodique.

Sa transformée de Fourier discréte est une suite, N-périodique, définie pour tout k € Z par :

— Inversement, on reconstruit le signal, pour tout n € Z, par :

2

= z_: x[n] e’ 2m (2.63)

n=0

P21

1 N—-1 k
=5 O Faalkle (2.64)

k=0

Le signal est décomposé en une somme de IV sinusoides complexes (% J.x[0] est la composante continue).

J, transforme une suite en une suite (indice g4).

La transformée de Fourier est constituée de raies spectrales localisées aux fréquences réduites multiples de %

13

— Pour calculer une transformée de Fourier discréte, on utilise un algorithme de transformée de Fourier rapide
(Fast Fourier Transform, FFT), particuliérement efficace quand N est une puissance de 2

P20. &

12.
P21.

13.

k—foo fO
Eaz(k]
Ea(f) =+ Zk__oo Eqx[k] 5( )
1n . kn
LN SN afm) eI e”“T
Aazlk]

Fex(A) = & S0 Faelk] (A - £)

—jQW%u duej%%f

:fo(u)l 400 ejZW%(t_u)du:z@[ﬂ'»—}%ﬂl(%)}(t):m(t)
—_—

0 T k=—o00
m(t—u) élément neutre
T
N—1 N-1 j2n knom) _
Zm Occ[m] N 22k=0 *(x@lTN)[n]*a“[”]
1y [n—m]
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2.12 L’analyse de Fourier en pratique

On ne peut traiter numériquement un signal z a temps continu ou de durée infinie : Fx ou J_ x ne sont pas
calculables. Donc, en général, le traitement numérique nécessite :

échantillonnage, on se raméne d’une F, 4 une J, par le changement de variable (2.52), 14

troncature temporelle, une %, est approchée par une somme finie, on retrouve le calcul d’une J%;.
On en verra les effets en travaux dirigés.

A titre d’exemple, la figure ci-contre représente le coefficient de marnage de la marée enregistré pendant un an, et
son analyse de Fourier. Le temps entre deux marées est approximativement de 12 heures et 25 minutes. 15

120

8000 [

6000

4000 |

Tide level coefficient
Fourier transform

0 50 100 150 200 250 300 350 400 0 001 002 003 004 005 006 007 008 009 01
Time (day) Frequency (repetition per day)

On observe des pics explicables par des connaissances astronomiques (phénoménes se répétant tous les 14 ou 28
jours), ainsi que des lobes que nous expliquerons en travaux dirigés.

14. E.x(f) = f% Foy (]C%) pour tout f € {f%, %], on suppose que la condition de Shannon est vérifiée.

15. Ce coefficient adimerisionnel7 utilisé en France, ne dépend pas du lieu géographique. On le multiplie par un facteur dépendant du
lieu géographique pour obtenir le marnage en ce lieu. Il dépend de la marée haute, il est donc & temps discret.
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Chapitre 3

Systémes LTI : relier deux signaux

3.1 Généralités

Un systéme consiste en une relation de cause a effet entre un lot de " ‘
u(t) Systéme y(t)

signaux d’entrée et un lot de signaux de sortie. - L
a temps continu

Lorsqu’on se lave les mains, on utilise un systéme a 2 entrées (positions
angulaires des 2 robinets) et 2 sorties (débit et température de l'eau).

Les entrées sont aussi appelées commandes, ou excitations. u[n] Systéme y[n]
Les sorties sont aussi appelées mesures, ou réponses. a temps discret

On parle de systéme & temps continu ou & temps discret, suivant les
signaux d’entrée-sortie.

Dans ce cours, on se limite aux systémes mono-entrée mono-sortie.
Soit S un systéme :

— en général, 'excitation est notée u, la réponse est notée y;
— on note provisoirement la relation de cause a effet liant la réponse a l'excitation y = S(u).

Dans la table ci-dessous, y(t) désigne la réponse a l'instant ¢. !

Si y(t) ne dépend jamais de ‘ le systéme est ‘ sinon, il est

{u(t) | T #t} statique ou sans mémoire dynamique

{u(r) | 7 =t} (présent) sans transmission directe a transmission directe
{u(r) | 7 > t} (futur) causal non causal

{u(t) | 7 < t} (passé) anticausal non anticausal

Un systéme est dit stable si, son entrée étant bornée, sa sortie reste bornée.

Un systéme peut vérifier les propriétés suivantes (u et u’ sont 2 signaux d’excitation quelconques) :

Superposition, ou additivité | S(u+u') = S(u) + S(u')

Homogénéité Va € C,S(au) = aS(u)
Linéarité superposition et homogénéité
R t t— =S5(t t—
Invariance temporelle si y = S(u) alors VreR, (b= ylt—m)) =St ult = 7))
VkeZ, (yln—k)n=S((uln—k)n)

Un systéme linéaire temporellement invariant est dit LTI.

A L’appellation « systéme LTI » est trompeuse.
Il vaudrait mieux dire « systéme représenté par un modeéle LTI ».
Tout modéle mathématique est une approximation de la réalité physique.

1. Et pas la fonction ¢ — y(t).

23
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783 Soit un systéme LTI de réponse impulsionnelle h = S(9).

. < i . P1
On calcule la réponse a n’importe quelle entrée par convolution :

S(u) =h=x*u (3.1)

Donc, un systéme LTI est complétement caractérisé par sa réponse impulsionnelle S(4), réponse a 'impulsion de
Dirac ou de Kronecker.

— Le systéme est :

. 2 P2
— causal ssi h est causale;

— sans transmission directe ssi h n’a pas d’impulsion en ¢t = 0 (temps continu : h(0) fini; temps discret :
h[0] = 0);
— stable ssi h est absolument sommable (c’est-a-dire si h admet une transformée de Fourier). P

184 [ Exercice 15. Le prédicteur a un coup est un systéme a temps discret qui cherche a prédire a I'instant n la valeur
qu'aura l'excitation a l'instant n + 1 par extrapolation linéaire : les points (n — 1, u[n — 1)), (n,u[n]), (n + 1, y[n])
sont alignés.

a) Ecrire la récurrence liant y[n] a u[n] et u[n — 1J.
b) En déduire la réponse impulsionnelle.

c) Veérifier la cohérence avec la convolution.

d) Causalité, transmission directe, stabilité.

P1. Pour un systéme a temps continu (démonstration en temps discret tout a fait analogue) :

Par définition : t —> h(t) est la réponse a ¢t +— §(t)
Par invariance temporelle, pour tout 7 : t— h(t—71) est la réponse & ¢t +— §(t — )
Par homogénéité, pour tout 7 et tout signal u : t— u(r)h(t—7)dT est la réponse & ¢t +— u(r) §(t —7) d7

Par superposition (somme sur 7), pour tout signal u : t — fjf: w(T)h(t — 7) d7 est la réponse & ¢+— fj:: u(t) 6(t—7)dr

2. En discret : Vn < 0, h[n] = 0. En continu : Vt < 0, h(t) =0, et padddidérivée de I'impulsion en ¢ = 0. u(t)

P2. En discret, la démonstration est évidente. En continu, il s’agit d’une justification intuitive, plus que d’une démonstration. S’il
existe ¢ < 0 tel que h(t) # 0, alors la réponse impulsionnelle devance 1’excitation, le systéme n’est donc pas causal. Si h(t) = 0
pour t < 0 et h admet une dérivée premiére de I'impulsion de poids a en 0, y(t) = fi;o w(T)h(t — 1) d7 4+ au(t); le poids de

limpulsion en ¢ est a (u(t+) — u(¢t—)) , le systéme n’est donc pas causal. Réciproquement, si h est causale avec une impulsion

de Dirac de poids a en 0, y(t) = fﬁ;o u(T)h(t — 1) d7 + awu(t). Le systéme est donc causal. Pour que le systéme ne soit pas a

transmission directe, il faut et il suffit que a = 0.

P3. Par l'inégalité triangulaire : |y(t)| = |fir§: u(t)h(t — 1) d7| < fj:oo Ju(T)||h(t — 7)| d7 < max, |[u(t)] fj:; |h(7)] d 7. Donc, si u

est bornée, il suffit que fj{: |h(7)| d T soit finie pour que y soit bornée. Pour le signal borné u(t) = \hh((—7t§>| si h(—t) # 0 (0 sinon),

y(0) = f:r:j |[h(T)| d7; la condition est donc nécessaire.
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3.2 Représentation par transfert
La fonction de transfert, ou transmittance, ou plus simplement le trans- u(t) y(t)
fert, d’un systéme LTI est la transformée de Laplace (ou en z) de sa réponse —— Lh(s) "
impulsionnelle.
Comme ces transformées convertissent la convolution en produit, pour tout s u[n] y[n]
(ou z) dans intersection des domaines de convergence de Lh et Lu (ou Zh et — Zh(z) "
Zu) :

Ly(s) = Lh(s) Lu(s) Zy(z) = Zh(z) Zu(z) (3.2)

Les poles du systéme sont les valeurs de s (ou z) tels que Lh(s) = oo (ou Zh(z) = 00).
Les zéros du systéme sont les valeurs de s (ou z) tels que Lh(s) =0 (ou Zh(z) = 0).

0
La multiplicité d’un pole s, est un nombre entier m tel que lim,_,, (s — s9)"" Lh(s) est fini non-nul. 3

En général, plusieurs systémes ont la méme expression du transfert ;
. L . 4
il faut spécifier le domaine de convergence.

Parmi ces systémes :

— au plus un est causal,

— au plus un est anticausal,

— au plus un est stable.
Si on se fixe un de ces contextes, par exemple les systémes causaux, 'ambiguité est levée.
On montre qu’un systéme causal est stable ssi les poles :

— sont & partie réelle négative pour un systéme a temps continu,

— sont de module inférieur & 1 pour un systéme a temps discret.

® La difficulté mathématique réside dans le cas ot des poles sont sur I'axe imaginaire (ou le cercle unité).

On peut étendre la notion de stabilité au cas ou de tels péles existent, mais sont de multiplicité 1.
La sortie d’un tel systéme causal, dont ’excitation revient définitivement a 0, ne diverge pas.
C’est la stabilité au sens large.

& Exercice 16. On rappelle que ¢ — fi u(7) d 7 est la primitive de u qui s’annule en a.

L'intégrateur causal est le systeme tel que y(t) = ffoo u(r) d7.

. . . t
L'intégrateur anticausal est le systéme tel que y(t) = [ u(r) d.

a) Pour ces 2 systémes, quelle est I'équation différentielle liant u et y?
b) Pour ces 2 systémes, quelle est la réponse impulsionnelle ?

c) Pour ces 2 systémes, quel est le transfert ?

& Exercice 17. On s'intéresse uniquement a |'intégrateur causal.
a) Par analyse de la réponse a I'échelon, le systéme est-il stable ?
b) Si I'entrée revient définitivement a 0, que fait la sortie ? Le systéme est-il stable au sens large 7
c) Mémes questions par I'analyse des péles.

& Exercice 18. On s'intéresse maintenant au double intégrateur causal.
a) Quel est le transfert?
b) Par analyse de la réponse a une porte rectangulaire, le systéme est-il stable au sens large ?
c) Méme question par |'analyse des pdles.

% avec G(sq) fini non-nul.
—50

4. On rappelle que ce domaine est délimité par les poles, et qu’il n’y a pas de pole a I'intérieur.

3. Le transfert peut s’écrire
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3.3 Du transfert a la réponse fréquentielle

La réponse harmonique (ou fréquentielle), ou la fonction de transfert isochrone d’un systéme LTT stable
est la transformée de Fourier de la réponse impulsionnelle.

f = Eh(f) = Lh(j2r f) A= Eh(N) = Zh(e? ™) (3.3)

Si on écrit Eh(f) = G(f) e *W)
— [ G(f) est le gain,
— f—  ®(f) est la phase,

— [ —%ff) est le retard de phase.

5

La réponse a une sinusoide complexe u de fréquence fy est y = FE h(fy)u, soit une sinusoide complexe de méme
fréquence, amplitude est multipliée par G(f;), la phase est augmentée de ®(f,) P4
siu(t) = Ael B fotte)

alors y(t) = G(f,) Ae’ (27 fo t+p+2(fo)) (3.4)

A Un systéme a phase nulle, donc sans retard, est tel que h(—t) = h*(t). Il est statique ou non causal.

& Exercice 19. On rappelle que la transformée de Fourier d'un signal a valeur réelle est de module pair, phase impaire.
Soit un systéme LTI stable, a réponse impulsionnelle h a valeur réelle. On pose Eh(f) = G(f)¢’ e,
Que vaut la réponse a t — A cos(2w fot + ¢)7?

Soit un systéme LTI & temps continu, causal, stable, & réponse impulsionnelle & valeur réelle.

Sa réponse fréquentielle est représentée dans le plan de Bode (page 40) : (G(f))4p et ®(f) en fonction de f dans
un plan semilog.

En échelle dB, on choisit une grandeur de référence G, pour définir :

GdB = 20 loglo %

Le plan de Bode de systémes élémentaires (1°° ordre, 2° ordre) est disponible en annexe (page 40).

Le systéme du 1°" ordre a un transfert de la forme : & R "
it
K le gain statique VW
Lhis) = 1 T €\ T > 01a constante de temps
e P u(t) C_ i)
fo= ﬁ est la fréquence de coupure a -3 dB.
Le systéme du 2° ordre a un transfert de la forme : & k c
1% K le gain statique m =il
Lh(s) = —————— avec { ¢ le coeff. d’amortissement | () y(t)
IL+2¢5+ W2 w, la pulsation naturelle i u ‘

Systéme mécanique ci-contre : K =1, w, = /£, (= =

Sic < g, le gain a un maximum a la fréquence de résonance.

& Exercice 20. Pour le quadripéle RC ci-dessus, les lois de I'électricité méne a I'équation différentielle y + RC' 3 = w.
Par la linéarité de la transformée de Laplace et le théoréme de la dérivée, obtient-on un transfert du 1* ordre? Si
oui, que valent le gain statique et la constante de temps?

5. Voir retard de phase et retard de groupe en annexe (page 39).
P4. La transformée de Fourier de u s’écrit : Eu(f) = ae’ ¢ d(f — fo)- La transformée de Fourier de la réponse y est alors : E y(f) =
Eh(f) Eu(f) = aFEh(f)e ¢ 5(f — fo) = aEh(fo) e’ ¢ 6(f — fo). Par transformée inverse, on obtient le résultat.


https://autorobo.ec-nantes.fr/movie/video.php?file=rf1.mp4
https://autorobo.ec-nantes.fr/movie/video.php?file=rf2.mp4
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3.4 En pratique

Comment obtenir le transfert d’un systéme physique ?

Par des lois de la physique qui lient y a u.
On suppose que y et v ont une transformée de Laplace; si le rapport % est indépendant du choix de u, alors
le systéme est LTI et ce rapport est le transfert.

Dans ’exercice précédent, on a utilisé les lois de 1’électricité et le théoréme de la dérivée.

Le retard 7 de la température d’un fluide & la sortie d’une conduite par rapport & la température & l’entrée
correspond a I’équation y(t) = u(t — 7), le théoréme de la translation temporelle méne au transfert s — e .
Par intuition, au vu des signaux, on conclut qu’un modéle LTI convient et on propose une structure de transfert.

Si les signaux d’entrée-sortie sont échantillonnés, on peut obtenir un transfert en temps discret équivalent.

Si les paramétres sont inconnus, ils doivent étre estimés & partir de signaux d’entrée-sortie : c’est ’identification
paramétrique.
Inversement, la synthése consiste :

1. a déterminer un transfert satisfaisant un cahier des charges, a temps continu (systéme analogique), ou discret
(systéme numérique) ;

2. puis a réaliser un systéme ayant ce transfert, sur un composant dédié (électronique, mécanique, pneuma-
tique...), ou sur un calculateur analogique (ciblage de potentiométres, condensateurs ajustables, somma-
teurs, intégrateurs...) ou numérique (programmation d’ordinateur avec cartes d’entrée-sortie, de micro-
contrdleur. . .).

En traitement du signal, la synthése de filtre fournit un systéme causal, la synthése de lisseur fournit un
systéme non causal.

Typiquement, la réponse fréquentielle doit satisfaire un gabarit passe-bas, passe-haut, passe-bande, coupe-bande. ..

Passe-bas Passe-haut,

| Fh(f)

Passe-bande Coupe-bande

[Eh(f)]

7 s
Pour effectuer un lissage, il y a nécessairement stockage de données ®, et le lisseur est décomposé en un systéme
causal et un systéme anticausal :
— en série : h = heaygal * Nanticausals
— en paralléle th= hcausal + hanticausal'

En automatique, on élabore une loi de commande nécessairement causale, telle que la sortie du systéme piloté

suive une trajectoire désirée, et on 'implante sur un correcteur (ou régulateur).
Ydesire
0 5] y

U R
TCorrectem Systéme

passe-haut, passe-bande, coupe-bande?
b) Lors d'un échantillonnage, ce filtre est-il numérique ou analogique ?

c) Lors d'une décimation, ce filtre est-il numérique ou analogique ?
d) Cette année, la mode est-elle au calculateur analogique ou au calculateur numérique ?

& Exercice 21.

6. Cylindre phonographique (1877), disque (1887), micro-sillon (1945), bande magnétique (1928) en stockage analogique; disquette
(1967), disque dur (1956), mémoire flash (1988), mémoire vive en numérique.
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Dans la table ci-dessous, les transferts ne peuvent représenter qu’un seul systéme.
La translation temporelle est causale si 7 > 0 ou d > 0 (retard), anticausale si 7 < 0 ou d < 0 (avance).
Le gain pur, systéme statique, est causal et anticausal.

‘ Equation ‘ Transfert ‘ Rép. impulsionnelle ‘ Stable
Temps continu
Translation | y(t) = u(t — ) |e *" 5(t—1) oui
Gain pur  |y(t) = Ku(t) |K K(t) oui
Temps discret
Translation | y[n] = uln — d]| 27 d[n —d] oui
Gain pur |y[n]=Kuln] |K K é[n] oui

198 Dans la table ci-dessous, les équations et transferts de I’intégrateur ou du sommateur, du systéme du 1°" ordre,
de leurs généralisations a pole multiple, peuvent représenter un systéme causal ou anticausal. Mais la réponse
impulsionnelle, le domaine de convergence, la stabilité sont donnés dans le cas causal.

\Equation \Transfert \Rép. imp. \Stable

Temps continu

Intégrateur Y(t) = u(t) 1 (s)>0 step(?) non'

1% ordre y(t) + ay(t) = u(t) Sia (s) > —R(a) |e > step(t) R(ar) > 0F

k —1

Integ. multiple ‘;t}j (t) = u(t) % (s)>0 (Zlil), step(t) non

Généralisation (s+lo¢)k (s) > —R(a) % e " step(t) | R(a) > 0
Temps discret

Sommateur y[n + 1] — y[n] = un] :_1,1 |z > 1 step[n — 1] non'

1% ordre y[n+ 1] — ayln] = un] 17[ — |z] > |af o" ' stepln — 1] ||a| < 1°

Somm. mult. S A |z] > 1 non

-z
Généralisation ufifl)" |z] > |af la <1

TStable au sens large

TStable au sens large si R(a) =0

SStable au sens large si |a| = 1

T99 La solution de I’équation régissant l'intégrateur causal ou le sommateur causal est 7

— La table pour les systémes anticausaux est obtenue :

en conservant ’expression de I’équation temporelle,

en conservant l'expression du transfert,

n—1

en changeant le sens de I'inégalité dans le domaine de convergence et la condition de stabilité,

en remplagant step(¢) par — step(—t) dans la réponse impulsionnelle (temps continu),

en remplagant step[n — 1] par — step[—n| dans la réponse impulsionnelle (temps discret).

La solution de I’équation régissant I'intégrateur anticausal ou le sommateur anticausal est :

y(t) = L ;

u(r) dr

T100 Le dérivateur mérite un examen particulier :

— l’équation temporelle est y(t) = u(t),

— le transfert est s — s,

— la réponse impulsionnelle est le doublet 4.

Il n’est ni causal, ni anticausal.
)

Ceci se généralise au dérivateur multiple, de réponse impulsionnelle

7. Intég., som. mult. : y(t) = fﬁoo S

Tk—1
— 00

—/t+oou(r) dr

dk

u(ty) d7g...d7y, y[n] = 221:_00 Zdzz—oo'

+oo
yln]

k=n

t,f,oﬂk}l,det

dy

5>

— > ulk]

ransfert s s s*.

di_1

dpy=—o0 uldy].
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T101 Un systéme différentiel (respectivement systéme récurrent) est un systéme a temps continu (respectivement a
temps discret) tel que la réponse y et I'excitation u vérifient ’équation différentielle (respectivement aux différences)
linéaire a coefficients constants suivante (ay et by, ne sont pas tous deux nuls) :

N-1
i N
bMU/ +ZbM1 >+b0dM():aNy(t)+ZaN—'thigot)‘i‘diAy(t)
i=1

dt
M-1 N-1
bar uln] ZbM iu[n +1i] + byuln + M] = ay y[n] ZGN iyln+ i) +y[n+ N
i=1 i=1

— Par le théoréme de la dérivée en continu (du retard en discret), son transfert est défini pour tout s ou z dans le
domaine de convergence par une fraction rationnelle :

bar+bar 15+byy o8t + - +by s 4 by sM
Lh(s) = 2 N-1 N
ay +an_1S+any_o8 +---+a1Ss + s
bM+bM,12'+bM,22’2+"'+b12’1w?1+b02M
Zh(z) = 2 N-1 N
CLN+(ZN_1Z+CLN_2Z +"‘+alz —+ z

1102 & Exercice 22. Ecrire I'équation différentielle (ou récurrente) et le transfert pour N =2, M = 1.
— Pour un systéme causal : Ps
— nécessairement, N > M ; 8 avec le degré relatif d=N — M :

— en temps continu, une entrée finie n’a d’effet immédiat que sur les dérivées au moins d° de la sortie;
— en temps discret, I’entrée a U'instant n n’a d’effet sur la sortie qu’a partir de Uinstant n + d ;
— il y a transmission directe ssi N = M ;
— il y a stabilité ssi les poles
— sont & partie réelle négative pour un systéme a temps continu,
— sont de module inférieur & 1 pour un systéme a temps discret.

mo3 3.6 Du transfert a la réponse indicielle (systémes causaux)

La réponse impulsionnelle est un outil mathématique qu’on peut rarement obtenir sur un systéme physique.

— On analyse le comportement d’un systéme causal par la réponse indicielle.

A Ne pas confondre :
— la réponse impulsionnelle, réponse a I'impulsion de Dirac ou de Kronecker S(0) = h,
— et la réponse indicielle, réponse a ’échelon S(step) = h * step.

& Exercice 23. Exprimer la réponse indicielle du systéme du 1°" ordre, de transfert 1+ST (T > 0).
— La réponse indicielle du systéme du 2° ordre, de transfert —&— est disponible en annexe (page 41).
142¢ St 2
Si ¢ < 1, cette réponse est pseudo-périodique et présente un maximum localisé au temps %42 =
W,” -

T104 Soit un systéme a temps continu, causal, avec tous les poles non nuls stables.

— Si 0 est un zéro, la réponse indicielle tend vers 0.

— Sinon, la classe c est la multiplicité du pole 0. On peut écrire le transfert sous la forme :
Lh(s) = sﬁc G(s) avec G(0) =1 (3.7

— La dérivée ¢° de la réponse indicielle tend vers la constante K.

P5. Soit N' < N le nombre de péles distincts, {P, | 1 < k < N’} I'ensemble des poéles, et soit my, la multiplicité du pole Py. La
décomposition en éléments simples d’une fraction rationnelle permet d’écrire celle-ci sous la forme suivante :

(S*Pk)nlk

- ' Bi,m
Lh(s)=ag+ays+ +ay_ns" N+chv:1(ffﬁlk+“‘+ SRl )
siM >N

Le systéme se décompose donc en une somme de systémes plus simples : dérivateur en continu (avance en discret), gain pur si
M > N, intégrateur en continu (retard en discret) si 0 est un pole, 1°" ordre ou sa généralisation a pole multiple. Un systéme
physique étant causal, il ne peut comprendre de dérivateur ou d’avance, ce qui impose que M < N. Pour un systéme causal,
chaque sous-systéme doit étre causal. Pour un systéme causal stable, chaque sous-systéme doit étre causal stable.

8. Le transfert est dit propre.


https://autorobo.ec-nantes.fr/movie/video.php?file=repind.mp4
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— Pour un systéme de classe 0, la réponse indicielle tends vers le gain statique K = Lh(0).

Soit un systéme a temps discret, causal, avec tous les poles non nuls stables.

— Si 1 est un zéro, la réponse indicielle tend vers 0.

— Sinon, la classe c est la multiplicité du poéle 1. On peut écrire le transfert sous la forme :

Zh(z) = (1—2% G(z) avec G(1) =1 (3.8)

P Lo , . .. 9
— La dérivée numérique ¢ de la réponse indicielle tend vers la constante K.

— Pour un systéme de classe 0, la réponse indicielle tends vers le gain statique K = Zh(1).

3.7 Du transfert a la réponse temporelle avec conditions initiales

On peut calculer la réponse d’un systéme causal & une entrée quelconque connue uniquement pour les instants
positifs, en partant de conditions initiales connues, grace aux transformées monolatéres.

La transformée de Laplace monolatére £y d’un signal a temps continu y est définie par : 10
+oo
LYy(s) = / y(t)e *t dt (3.9)
0—
Le théoreme de la dérivée devient : 761
L7h(s) =5 LTy(s) —y(0-) (3.10)
La transformée en z monolatére Zy d’un signal & temps discret y est définie par : '
“+oo
() = Y yln] 2" (3.11)
n=0
Le théoréme relatif a la translation temporelle devient : P713
2yl —1))n(z) = 27 27 y(2) —y[-1] (3.12)

B Exercice 24 (Réponse du systéme du 1% ordre). Soit le transfert Lh(s) = 7.

a) Ecrire I'équation différentielle liant la réponse y a I'excitation w.
b) Ecrire la transformée monolatére de y en fonction de la transformée monolatére de u et de y(0—).
c) En déduire la réponse partant de y(0—) a une entrée constamment égale & 1 pour ¢ > 0

A Tissue de cet exercice, on voit que la réponse du systéme est la somme de la réponse a la partie causale de
I’excitation et d’un terme complémentaire dépendant des conditions initiales.

9. La dérivée numérique de (u[n]),, est (u[n] —u[n —1]),
10. Pour tout s tel que l’intégrale converge. fotoo = limgqo fjoo On prend en compte le poids des impulsions en ¢t = 0. y(0—) =
limypo y(2)- N
oo
P6. En intégrant par parties, £+y(s) = Otoo gtye *tdt = [y(t) eiSt]O + s fotoo y(t) et dt = 3L+y(s) — y(0—), ou l'on a
St = 0, condition nécessaire pour que la transformée de laplace soit définie en s.

k—1 k=2 dy d

supposé que lim;_, , o, y(t)e
k

0— 0—) 4

y(O0) + 2 A0 s

11. Par récurrence : E+d—,ﬁ’(s) =" L+y(s) —[s
12. Pour tout z tel que 'intégrale converge.

P7. 27 [(yln— nez] (2) = XpZouln =1z " = 0% yyfm] =" = S0 ylml =" 4yl =27 ZTy(2) — yl-1)
13. Par récurrence : 2" [(y[n — E])pezl (2) = P Z+y(z) — (z7<k71) y[—1] + PG y[—2]+ -+ 2 y[—(k — 1)) + y[—k])

=4 (0-) + St (0-)]
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3.8 Echantillonnage (transfert)

Soit un systéme LTI causal a temps continu, de réponse impulsionnelle u(t) y(t)

h, excité par u, de réponse y. = Lh(s) >
Par échantillonnage a la période T, on obtient ug et . Y A
Existe-t-il un systéme & temps discret, de réponse impulsionnelle h, tel T, T,

que ¥, en soit la réponse a ug ? | |

La réponse est en général négative; la réponse échantillonnée yg[n] a l ? l

I'instant n dépend des valeurs de u(7) pour tout 7 < nTy, en particulier u+[n]» Zh(z) | ys[n] >
les valeurs entre les instants d’échantillonnage.

Cependant, sous certaines hypothéses sur I'excitation u entre les instants d’échantillonnage, les méthodes d’in-
variance répondent rigoureusement a la question.
Sinon, on est contraint de faire des approximations (approximations de l’intégrateur).

Dans une méthode d’invariance, on se donne une fonction ¢.

La réponse a I’échantillonnage de ¢ du systéme échantillonné est
I’échantillonnage de la réponse a ¢ du systéme a temps continu :

hox gy = (h+0), (3.13)
On obtient donc le transfert du systéme échantillonné par :
7 Z(h* ¢)s(2)
Zh(z) = —————— 3.14

® Pour un systéme LTI, I'invariance a la fonction ¢ entraine I'invariance a toute combinaison linéaire des fonctions
obtenues par translation de ¢ par un multiple de la période d’échantillonnage.
Il n’y a donc aucune approximation si I'excitation u peut étre reconstruite a partir de son échantillonnage ug
par un bloqueur fondé sur ¢ (page 20).

Si on prend ¢ = step, c’est I’invariance indicielle, ou mé-

Zh(z) = W = (1—2z"") Z(hstep)s(2) (3.15)

® Si le systéme est piloté par un calculateur numérique, I’excitation est constante entre deux instants d’échan-
tillonnage : le systéme échantillonné par I'invariance indicielle est exact.

L’invariance impulsionnelle (¢ = ¢), et ’invariance & une rampe (ou méthode FOH, ¢ = ramp) sont
disponibles en annexe (page 38).
Une méthode d’approximation de ’intégrateur intégre par la méthode des rectangles ou des trapézes.
L’intégration est une convolution avec I’échelon. Son transfert est :
Ly(s)
Lu(s)

= Lstep(s) = é (3.16)

Le transfert de approximation g, de y, & partir de ug s’écrit P8

Z0.(2) Z(step — 6)(2) —— (rectangles a gauche)
ZZS B =T, x § Zstep(z) =T, x 1_1,1 (rectangles a droite) (3.17)
s Z(step —1 6)(2) 1 iﬁj (trapézes)

P8. L’échantillonnage de y & la période T, donne : yg[n] — ys[n — 1] = f{;j}l) 7 w(7) d7. Les approximations g de ys peuvent donc

T, ug[n — 1] (rectangles a gauche)
s'écrire : gg[n] — gs[n — 1] = { Ty ug[n] (rectangles a droite) . Par le théoréme du retard, on obtient le résultat.

T w (trapézes)
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Au facteur multiplicatif T, prés, il s’agit d’une convolution avec 3 versions de 1’échelon :

— & valeur 0 en 0 pour les rectangles a gauche,
— a valeur 1 en 0 pour les rectangles & droite,
1

— a valeur 5 en 0 pour les trapézes.

T112 En inversant les transferts, on obtient trois approximations du dérivateur :
— Dlintégration par rectangles a gauche donne 'approximation d’Euler de la dérivée & droite;
— l’intégration par rectangles & droite donne ’approximation d’Euler de la dérivée & gauche;

— l’intégration par trapézes donne I'approximation de Tustin, ou approximation bilinéaire.

E.(z)= Zil_l (Euler a droite)
E.(2) = 1—755 (Euler a gauche) (3.18)
B(z) = # {72 (Tustin)

— Pour échantillonner un systéme LTI & temps continu de réponse impulsionnelle h a la période Ty, il suffit de faire,
pour la transformation de Tustin par exemple :

Zh(2) = Lh(B(z)) (3.19)

— La transformation bilinéaire, détaillée en annexe (page 39), transforme le cercle unité en I’axe imaginaire, ce qui
conserve la stabilité.

T113 & Exercice 25. Soit le systéme de transfert H%

a) Donner la solution par invariance indicielle.

On I'échantillonne a la période T5.
b) On suppose que T, < T, d'ou I'approximation exp(f%) ~1-— % Simplifier la solution précédente.
c) Donner la solution par Euler a droite.

s 3.9 Représentation dans ’espace d’état

Un systéme causal d’entrée u, de sortie y, admet une représentation dans ’espace d’état s’il existe 4 matrices A,
B, C et D, telles qu’on puisse écrire I’équation d’observation :

y(t) = Cz(t) + Du(t) yln] = C z[n] + D uln] (3.20)
ou la fonction vectorielle x, 1’état, vérifie 'équation différentielle (ou récurrente) dite équation d’état :
z(t) = Az(t) + Bul(t) z[n+ 1] = Az[n] + B uln] (3.21)

A est la matrice d’évolution, ou matrice de transition,
B est la matrice de commande,

C est la matrice d’observation,

D est la matrice de transmission directe.

T115 On obtient souvent une représentation dans ’espace d’état en organisant R L o
. L . v, . N it
sous forme vectorielle les équations différentielles, obtenues par exemple a — NNV YN———

partir de lois physiques.

& Exercice 26. Soit le quadripéle RLC ci-contre. Les lois de |'électricité permettent d'écrire :
u—y=Ri+ L% i=C%y

Ecrire la représentation dans I'espace d’état correspondant a |'état x = [f]
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e 3.10 De ’espace d’état au transfert, et inversement

On obtient le transfert & partir d’une représentation dans I’espace d’état par : 1479

Lh(s)=C(sI—A)"'B+D Zhz)=C(z1—A)'B+D (3.22)
® Les représentations dans l'espace d’état et par transfert rationnel sont équivalentes.

La dimension du vecteur d’état est égale au degré du dénominateur du transfert.

— L’inverse de s I — A est I'inverse du déterminant multiplié par la matrice complémentaire. Ce déterminant, qui n’est
autre le polynome caractéristique de A, est donc le dénominateur du transfert.

Ses racines, c’est-a-dire les valeurs propres de la matrice d’évolution, sont donc les poéles du systéme.
Le systéme est donc stable ssi les valeurs propres de la matrice d’évolution A sont a partie réelle négative en continu,
dans le cercle unité en discret.

T117 On peut obtenir une représentation dans l’espace d’état a partir d’un transfert rationnel de la forme :

M1 i M M1 i M
>0 bais+bgs > buoiz bz
Lhs) = S ) = ST (3.23)
S an_;s+s > an_i 2tz
i=0 i=0

On va exhiber deux formes particuliéres, les formes canoniques.

T118 Pour un systéme sans transmission directe (M < N), la forme canonique directe s’écrit :

—aq —apn_ —a 1
e I
I(N—l)x(N—l) ‘O(N—l)xl O(N—1)><1 (324)
C= I:O(N—Al—l)xl ‘ bo bM] D=
P10

La forme canonique inverse s’écrit :

771 O(N—Z\/I—l)xl
A= : I(N—l)x(N—l) B = bo
e T : (3.25)
—oN ‘ 1x(N-1) b
O = 10,000 D=0

T119 Pour un systéme avec transmission directe (M = N), la forme canonique directe s’écrit :

—a —an _ —a 1
A — 1 N-—1 ‘ N } B _ { }

I(N—l)x(N—l) ‘O(N—l)xl 0(N—1)><1 (3.26)
C = [bl—bo ay - by—by aN] D =1,

. . . .. P11
La forme canonique inverse s’écrit :

—a;

. I by —bgay
A= . (N=1)X(N—=1) B = : ]
_;\;1 ‘ 01><(N—1) by —boan (3.27)
C =110, n_»] D = by

14. o I désigne la matrice identité dont le nombre de lignes ou de colonnes égale la dimension du vecteur d’état.
sLx(s) = ALx(s)+ B Lu(s)
Ly(s) = CLx(s)+ D Lu(s)
Ly(s) _ bi+bg s _ bg s_2+b1 5_3

, dont on déduit le rapport ﬁz%z;

P9. Par transformée de Laplace, et par le théoréme de la dérivée, {

—. Pour la

P10. Voyons la méthode sur un exemple, avec N = 3 et M = 1: 7055 = s = o] Lo
u(s) az+ag stay s +s 14ays " 4ags ~tags
forme directe, on pose : Lx3(s) = bﬂygf) = Lu(s) 1, Lxo(s) = s Lxz(s), Lx1(s) = s Lay(s). Pour la forme inverse, on
1+bg s ag+ag s+ay s +s

décompose Ly(s) = s {[fal Ly(s)] +s [(bo Lu(s) — ag Ly(s)) + s (by Lu(s) —ay Ly(s)) ] } selon le schéma de Horner.

Lzg(s)
Ly (s)
Ly (s)
N-1 ;
2 (by_i—bpan_;)s
P11. On part du systéme sans transmission directe de transfert Lh(s) — by = “=%—

i N
S an_;s'ts
i=0
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. . . . . . )
A Les formes canoniques sont 2 représentations candidates parmi une infinité. *°

K

& Exercice 27. Ecrire une représentation dans |'espace d'état du systéme de transfert TieT

3.11 Solution de I’équation d’état

La résolution en temps continu nécessite la notion d’exponentielle de matrice.
=1 1
— L’exponentielle d’une matrice carrée A s’écrit : et = Z o AF =T+ 4+ 5 A4 ...
k=0

S1 0 el 0
. . s
— Pour une matrice diagonale S = - te” =

0 SN 0 . e’N
— Pour une matrice diagonalisable A = PSP ! avec S diagonale : et =pef Pt

— Pour une matrice non diagonalisable, le calcul est plus complexe, mais toujours possible.

— Si Aet A commutent (AA" = A’ A), alors e T = e e?

La transformée de Laplace de ¢ s e** step(t) est s — (s — A)~*.F12

La solution de I’équation différentielle © = Az 4+ B u qui régit I’évolution du vecteur d’état d’un systéme & temps
continu est, pour tout £ > 0 P13

t
(1) = e 2(0—) + / A Bu(r) dr (3.28)
0—
B Exercice 28. La formule ci-dessus se généralise en z(t) = e (t=to) z(tg) + ftto AT Bu(r) dr.
u est supposé bloqué a la valeur u(nT,) entre les instants n T, et (n+ 1) 7.
Ecrire la formule donnant z((n + 1) Ty) en fonction de u(nT,) et z(nTy).

On montre par récurrence que la solution de I’équation récurrente xz[n + 1] = Ax[n] + B u[n] qui régit 1’évolution
du vecteur d’état d’un systéme & temps discret est, pour tout n > 0 :

z[n] = A" z[0] + nz_: A" Bufk] (3.29)
k=0

15. Soit P une matrice carrée inversible, et définissons les matrices (A/, B/, Cl7 D/) telles que :
A'=pAP™" B =PB

c=cp™ D=D
Par le changement de base z = Pz, on vérifie immédiatement que la représentation (A/, B/, C’/, D/) d'état = et la représentation

(A, B,C, D) d’état = donnent le méme comportement entrée-sortie.

P12. La transformée de ¢ — e’ step(t) s’écrit Z::O% AF lc1+1 . On obtient la matrice identité en multipliant cette somme par s/ — A.
S

P13. L'équation homogéne s'écrit : & = Az. En lui appliquant la transformée de Laplace monolatére : £ az(s) = (sI — A)™" 2(0-).

Par Laplace monolatére inverse, z(t) = et 2(0—). La solution générale est obtenue par variation des constantes.
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3.12 Echantillonnage (espace d’état)

Soit un systéme a temps continu admettant une représentation d’état définie par le quadruplet (A4, B, C, D), d’entrée
u, de sortie y, d’état = :

(t) = Ca(t) + Dul(t)
{z(t) = Axz(t) + Bu(t) (3.30)

Soit Ty la période d’échantillonnage.
On obtient ug et y,, échantillonnages de u et y.

Par une méthode d’invariance ou par approximation de I'intégrateur, on obtient une représentation dans l'espace
d’état du systéme échantillonné d’entrée ug et de sortie y,, définie par le quadruplet de matrices (A, B,C, D) :

(3.31)

{ys[n] = C&[n] + Duy[n]
Z[n + 1] = AZ[n] + Bug[n]

Pour I’invariance indicielle, ’entrée du systéme & temps ug[n) u(t) y(t) ys[n]
continu est obtenue par blocage d’ordre 0. 4{ zoh HA, B.C, D} } }

Avec le vecteur d’état & = x4, on obtient une représentation d’état définie par le quadruplet (/L B.C, D) suivant :

T
A=t B:/ AT Bdr
0

c=cC D=D

(3.32)

La démonstration est disponible en annexe (page 43), ainsi que I’échantillonnage par I'invariance a une rampe et
par la méthode de Tustin.

& Exercice 29. Soit le systéme causal de transfert H% :

a) Proposer une représentation dans |'espace d’état.
b) L'échantillonner par invariance indicielle a la période 7.
¢) En déduire la fonction de transfert a temps discret.

& Exercice 30. Mémes questions pour le gain pur K.
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3.13 Vers le multientrée-multisortie et le non linéaire

Un systéme LTT multi-entrée multi-sortie (MIMO) peut étre représenté par une matrice de transfert, qui est
une matrice de fonctions de transfert ; par exemple, dans le cas 2 entrées-2 sorties :

|:£y1(5):| _ |:Eh1,1(5) £h1,2(5)] |:['u1(3):| (3.33)

Lys(s)] — [Lho(s) Lhyy(s)| [Luy(s)
La représentation dans 'espace d’état reste valide, avec des matrices A, B, C', D de dimension convenable.
y(t) = Cx(t) + D u(t)
{j:(t) = Ax(t) + Bu(t) (3.34)

Contrairement au transfert, la représentation dans l’espace d’état s’étend aux systémes non LTT :

{y(t) = ?(t

H0) = fltu

(t))’x(t)) (3.35)

3.14 Simulation
La simulation conduit & la résolution d’une équation différentielle ordinaire
x(t) = f(t,x(t)), c’est-a-dire :

z(t+dt) =z(t) + f(t,z(t)) dt (3.36)

Les calculateurs analogiques (ci-contre) ne sont plus a la mode.
Sur calculateur numérique, la méthode d’Euler consiste & choisir un pas d’in-
tégration fixe At et & calculer la récurrence :

B(t+ At) = 2(t) + f(t,2(t)) At (3.37)

Les résultats sont souvent mauvais, on dispose de méthodes de résolution (sol-
veurs) développées par les spécialistes d’analyse numérique.

Dans les méthodes & pas variable, il y a ajustement automatique du pas d’intégration.

En pratique, on étudie la physique du systéme pour choisir une valeur raisonnable du pas d’intégration maximal,
et on teste divers solveurs.



Annexe A

Compléments

A.1 Propriétés de symétrie de la transformation de Fourier

2™ désigne le signal o conjugué, z désigne le signal
x retourné (z(t) = x(—t)).

Si le signal x est conjugué et/ou retourné :

Fa'(f) = (Ra(=1)
Fea(f) = Fa(=f) (A.1)
Fa'(f) = (Fa(f)

On en déduit des propriétés de symétrie de la trans-
formée de signaux particuliers, dans le tableau ci-
contre.

’ Signal H Transformée

Reéel r= x Parties réelle paire,
imaginaire impaire

Imaginaire r=—-x Parties réelle impaire,
imaginaire paire

Pair r= x Paire

Impair r=—-x Impaire

Parties réelle paire,

imaginaire impaire rT= Reéelle

Parties réelle impaire,

imaginaire paire Tr=—-x Imaginaire

A.2 Théoréme de décimation de Shannon

Soit un signal & temps discret z, que 1'on a décimé (sous-échantillonné) d’un facteur N € N*; pour tout n :

x n[n] = z[N n]

Connaissant le signal sous-échantillonné z | y, est-il possible de reconstruire le signal d’origine x ?
Il est équivalent de se poser la question suivante : connaissant Ji x|y, peut-on reconstruire J x ?

dc

La décimation entraine une perte d’information. Cependant, sous certaines conditions, on peut reconstruire exacte

est possible. Exprimons préalablement la transformée J x| 5 en fonction de J x :

1

N—

£=0

La fonction A\ — K.z, n(N A) est périodique de période % Donc :

si Fxz(A) =0 pour tout A € |7
alors E.x(A\) = NEx n(NN) pour tout A € [—5
Dans le domaine temporel :
+oo

x[n] = Z z) N (K] sinc(”_ﬁN)

k=—o0

2N

P1

1—
1

2N

[ [\
- 5

PL Bz yn(NA) = Hrynvpn(A) = Folz Lin)(A) = (Fez @ B Lin)(A). Or F 1in(A) = HI(N A)

N-1
& Le—o WA -

N-1
~)- Done Foz v (NX) = 5 o2 Hee(A = 1)

37
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A.3 Blocage

En général, un bloqueur est fondé sur une fonction ¢ telle que :
— le signal bloqué x}, est une combinaison linéaire de ¢ et de ses versions décalées d’un multiple de T} ;

— l’échantillonnage & T, de x;, redonne le signal d’origine z.

Alors, nécessairement, pour tout ¢ (I’exposant -1 désigne l'inverse pour la convolution) P2
+oo
-1
wa(t) = Y (wxo;)nl ot —nTy) (A.5)
n=—oo

¢ = step donne le bloqueur d’ordre 0 (zoh), ¢ = ramp donne le bloqueur d’ordre 1 (foh). Récrire cette formule en

terme de convolution fournit la décomposition d’un bloqueur quelconque & 'aide du bloqueur impulsionnel : 1ps
Ty * ¢_1 = 7% (l‘ * (bs_l)imp (A6>
z[n] - zp(t)
- 7 #15(2) mp Lo(s) "
Pour un bloqueur d’ordre 0 (¢ = step) :
x[n] 1_,"1 . 1 xzoh(t)
T, mp s g
Pour un bloqueur d’ordre 1 (¢ = ramp) :
z[n] —2ia ] : 1 Tron (t)
T2 1p 52 "
A.4 Echantillonnage d’un transfert
Invariance impulsionnelle L’entrée du systéme a temps ug[n] ar— u(t) y(t) ys[n]
continu est obtenue par blocage impulsionnel. imp { Lh(s) } } %
Zh(z) = T, Zhy(2) (A7)
Invariance indicielle, ou méthode ZOH L’entrée du ug[n) — u(t) y(t) ys[n]
systéme & temps continu est obtenue par blocage d’ordre 0. : zoh { Lh(s) } { } -
_ Z(hxstep).(2) .
Zh(z) = —————==(1— Z(h * st .
()= " Gmene = (1= =) Z(hxstep),(2) (A.8)
Invariance & une rampe, ou méthode FOH L’entrée ug[n) — u(t) y(t) ys[n]
du systéme & temps continu est obtenue par blocage d’ordre - foh { Lh(s) } { } -
1.

Zh(z) = ‘W - Ti (2 — 2+ 271 Z(h * ramp), (2) (A.9)

P2. Par la 1"® hypothése, il existe une suite a telle que z},(t) = :z.ioo alk] ¢(t — kTy). Par échantillonnage, et comme (¢4[n — k]),,
est ’échantillonnage de t +— ¢(t — kTy) : xy, g[n] = ::ioo alk] gs[n — k] = (o * ¢g)[n]. Comme, par la 2° hypothése, on veut que
Tp,s = T, nécessairement, o x ¢ = @.

1. Dans le domaine des transformées de Laplace et en z, en se rappelant la formule (2.56) : %(s) = ZZ—; (es TS)

P3. [ (@ % &5 Dimp * ¢1(0) = [T 3 (2% 67 )] 8(r —nT) $(t —7) d7 = X, (%67 )nl [T 8(r —nT) (t —7) dr

7o @565 imp (1) $(t-—nT.)
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A.5 Transformation de Tustin

La transformation bilinéaire transforme le cercle unité en ’axe des imaginaires purs : Pd
B(’*™ ) = jor f, tan(r A) (A.10)
Donc, si h est I’échantillonnage de h par la méthode de Tustin :
-Ejl()\) =FEh (fs mnSTiﬂ)‘)) et, inversement J h(f) = ]ij (% arctan(m fis)) (A.11)

el

Pour f petit devant f, arctan(w fi) ~T fi :on a alors : Eh(f) = Eh (

)

La transformée bilinéaire comprime ’axe des fréquences +1/2
du systéme a temps continu vers le segment [—3, 1]. Cette
distorsion de fréquence est négligeable pour les basses fré-
quences (c’est-a-dire pour les fréquences petites devant la
fréquence de Nyquist ’%)

~< 0

La transformation de Tustin garantit un comportement —1/2

fréquentiel analogue du systéme & temps continu et du
systéme échantillonné correspondant pour les basses fré-
quences.

_fs./2 0 +fs/2
f

Cependant, si le contenu spectral de 'entrée u est concentré autour d’une fréquence f; < %, il peut étre préférable
de définir une transformation qui impose un comportement fréquentiel identique en cette fréquence, c’est-a-dire :

Eh(fo) = Fh () (A.12)

Il faut comprimer horizontalement la courbe ci-dessus ; ceci est obtenu par la transformée bilinéaire modifiée : 5
2 1-2z" tan(m fo Ty)

Bioa(z) = —— avec Tpoq= ———2 A.13

od( ) Tmod 1+ 271 od 7Tf0 ( )

A.6 Retard de phase, retard de groupe

Soit un systéme LTT de transfert Zh =G ¢’®. Le retard de phase 7, et le retard de groupe 7, sont définis par :

1) 1 de

— 7o(f) = —5= =5 (/) (A.14)

T¢(f):_277 f 2 d f

Soit une sinusoide modulée en amplitude :

S une sinusoide de fréquence f,

u(t) = a(t) S(t) avec {

a un signal basse fréquence (devant f;)

. R . . . P6
La réponse a cette entrée est approximativement :

(hxu)(t) = G(fo) alt — 74(fo)) S(t = 74(fo)) (A.15)

La sinusoide S est retardée du retard de phase, amplitude lentement variable a est retardée du retard de groupe.

]‘27\—)\7 j2m A —j2m A

J2mAy _ 2 1 _ 2 (e —1) (e +1) _ 2 . sin(2wA) _ 2 . o tan(mw )
P4. B(e )= T, ZJ AL T T (2 A1) (e T2 A1) T, J T¥cos@rn) — T, J tan(m A) = j2m f, =~
P5. En posant froq = 1/Tmods (A.11) est remplacée par : K h(A) = Eh(fmod w) Donc : E.h (;—2) = ]C-'Ch(% tan(m ]}—‘:))

(A.12) est alors vérifiée avec la solution (A.13).
P6. L’hypotheése que le signal a est basse-fréquence peut s’écrire : E.a(f) =0 si|[f| > fomax avec fmax < |fol-
D’aprés la formule (2.21), la transformée de Fourier de u s’écrit, pour tout f : F.u(f) = E.a(f — fo)-
Cette transformée est donc nulle hors de Uintervalle [fy F fmax].- Dans ce petit intervalle, on peut admettre que G(f) =~ G(fy), et
que ®(f) & ©(fo) + (f = fo) §F (fo), Cest-a-dire ®(f) & —2m fo 74 (fo) — 27 (f — fo) 7y (fo)-
Alors, par le théoréme du retard : E,(h*u)(f) = G(f) e’ *(h) E.a(f—fo) = G(fy)e 2m fo 7y fo) o=d2m (f=f0) 7g(fo) E.alf— fo)

Fe(t—a(t—7,(f0)))(f—fo)

Par transformée de Fourier inverse, et par la relation (2.21), on obtient le résultat.
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A.7 Plan de Bode

Pour un systéme dont la réponse impulsionnelle i est a valeurs soapdZe)lap
réelles, la réponse fréquentielle est & module pair et phase impaire. 20dB
) , . 0dB
La représenter pour les fréquences positives suffit. 20dB
. -40dB

Le plan de Bode a deux courbes : le gain, et la phase. . arg[E.h(f)]
L’axe des abscisses est la fréquence, en échelle logarithmique; on —90°
. ) s 2 —180
choisit une fréquence de référence fq. —970°
- . S . —360°

On choisit une détermination continue de la phase. 1072 107" 10 107

I/ fret
On représente le module en échelle déciBel (dB). Une grandeur positive G est exprimée en dB par :

Gup = 20 log;g

ol G, est une grandeur de référence arbitraire positive, homogéne a G.

L’échelle dB est définie & une constante additive prés, et n’a de sens que lorsqu’on fait la différence entre deux
valeurs homogénes exprimées en dB, car cette différence est indépendante de la grandeur de référence choisie.

Si I'on souhaite comparer deux grandeurs homogénes G; et G5 dont le rapport g—; vaut 10", ceci se traduit en

échelle dB par une différence (G;) s — (G2)4s égale & 20 x ndB.

G,/G, 1000 [100 [10 [2 ] v2[1]+v2/2]1/2]1/10 [ 1/100 | 1/1000
(G)as — (G2)as || 60 | 40 |20 | 6| 3 3 | -6 | -20 | -40 -60

A.8 Systémes du 1% ordre

Les systémes du 1°" ordre sont les systémes régis par I’équation différentielle & coefficients constants :
y+Ty=Ku (A.16)

Par le théoréme de la dérivée, on obtient immédiatement la fonction de transfert d’un tel systéme :

K
Lh(s) = TosT (A.17)
Par transformée de Laplace monolatére :
K Ty(0-)
+ _ +
Ey(s)—1+ST£ u(s)+1+$T (A.18)

K est le gain statique; T est la constante de temps, nécessairement positive pour assurer la stabilité du systéme
(le pole —% est a partie réelle négative si et seulement si 7' > 0), qui s’exprime en unité de temps.

Les réponses impulsionnelle et indicielle sont : K
h(t) = ge—% step() o) B
(hxstep)(t) =K (1—e %) step(?) =
00 T oT 3T iT 5T
La réponse du systéme en régime libre, partant de la condi- t
tion initiale y(0—), est :
y(t) = y(0—) e T pour tout ¢ > 0 (A.20)

La constante de temps T est le temps que met la réponse indicielle du systéme pour atteindre 63 % de sa valeur
finale K ; c’est donc une mesure de lenteur (plus T est grande, plus le systéme est lent).

2. On appelle une bande de fréquence de la forme [fy, 10 fy] une décade, une bande de fréquence de la forme [fy, 2 fo] une octave.
3. Certains multimeétres électroniques permettent de mesurer une tension ou une intensité directement en échelle dB, 'utilisateur
pouvant fixer la grandeur de référence a son gré.
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La réponse fréquentielle s’exprime par : 0
. -3
K a2 N
Ehf) = —F—= A.21 = X
cc (f) 1+.727TfT ( ) :— /dOOQQ’
e o
En posant f. = ﬁ, le gain et la phase s’écrivent : i
—20 1
/10 3 10,
F()s = [KLan = 20 logy [ 14 £ v ' !
. (A.22)  ~
arg (Eh(f)) = arg(K) — arctan (fi) —~
S 45 |
avec arg(K) =0si K >0, arg(K) = —7 si K < 0. &
o0
En basse fréquence (f < f.), et en haute fréquence (f > 2 o0 :
f.), la courbe de gain tend vers 2 droites asymptotiques : fe/10 e 10/,

ln | A () = 1Ko
f (A.23)
f#linoo “E;h(f”ds = |K‘d]3 - 20 loglo E
L’asymptote en haute fréquence est une droite de pente -20 dB/décade (si la fréquence est multipliée par 10,
lordonnée de la droite diminue de 20 dB) ou, de fagon équivalente, de pente -6 dB/octave (si la fréquence est
multipliée par 2, Pordonnée de la droite diminue de 6 dB). Ces deux asymptotes se coupent pour la fréquence f,.
De plus :

|]c_,—;h(fc)|dB = ‘K|dB —3dB (A24)
La fréquence f. est appelée fréquence de coupure a -3 dB, car la valeur du module de la réponse fréquentielle en
cette fréquence est égale a la valeur dans la bande passante (en basse fréquence) diminuée de 3 dB.

Un tel modéle peut représenter, par exemple, la température affichée par un thermométre en fonction de la tem-
pérature du milieu ambiant.

A.9 Systémes du 2° ordre

Les systémes du 2° ordre sont les systémes régis par ’équation différentielle a coefficients constants :
v+2¢ L+ L —Ku (A.25)
Wn, Wn,
Par le théoréeme de la dérivée, on obtient immédiatement la fonction de transfert d’un tel systéme :
K

Lh(s)= ——— (A.26)
14202+ %

Par transformée de Laplace monolatére :
K 1 2 0— 7(0— 0—
1—|—2Ci+5fz Wn, 1+2Cfn+f72

n

LTy(s)

K est le gain statique ; w,, est la pulsation naturelle (en md.s_l)7 ¢ est le coefficient d’amortissement (adimension-
nel), nécessairement tous deux positifs pour assurer la stabilité du systéme.

Réponses temporelles Par transformée de Laplace in- K(1+X,)
verse, on obtient la réponse indicielle, dont la forme dépend = Pan
de ¢. £

e 0 < ¢ < 1. Les poles complexes conjugués sont —w,, (( +£j1/1— CQ), la réponse indicielle s’exprime par :

(h x step)(t) = K (1 - e ¢“n sin(w, \/1— ¢t + arccos C)) step(¢) (A.28)

1-¢

Cette réponse est pseudo-périodique, de pulsation (appelée pulsation propre) w, = w, \/1 — (2.

Un systéme LTT & réponse indicielle pseudo-périodique peut étre caractérisé par le triplet (K, t,, X;), ou :
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— le temps de 1% dépassement t, est le temps pour lequel la réponse indicielle atteint son 1% maximum.

— L’amplitude du 1? dépassement X; (adimensionnel) ; soit y la réponse & un échelon d’amplitude quelconque :

y(tp) — y(+00)

= o)

pour un systéme du 2° ordre caractérisé par le triplet (K, w,,( < 1) :

t,=—"— X, = exp(——~<
Vi 1 exp( 17(2)

La dérivée de la réponse indicielle s’annule pour tout multiple de ¢,,.
o ( = 1. Le pole double est —w,,, la réponse indicielle apériodique vaut :

(h*xstep)(t) = K (1 — (14w, t)e t) step(t) (A.29)
On parle d’amortissement critique.

e ¢ > 1. Les poles —T7 ' = —w, (€ + I 1) et —Tyt = —w, (¢ — \/ = 1) sont réels, La réponse indicielle
apériodique vaut :

(h*step)(t) = K (14 T::lTl e T — % eiTLz) step(t) (A.30)
La réponse fréquentielle s’exprime par (f,, = 52) : A\M,,L”S C< L2
m
K = (> %
Fh(f) = . (A31) : L,
1= (£) +i2¢£ EN ¢

Le gain et la phase s’écrivent :

2
ER s = 1Ko — 20 T0gy0 |1 = (£) +52¢ £

f
2¢ &
arg(K) — arctan <§">2 sif<fa .
1—( 24— 3
I _
arg (Fh(f)) = 2c L (A.32) 18})”/10 In 10f,
arg(K) — m + arctan ——2  si f > f, J

avec arg(K) =0si K >0, arg(K) = —nsi K <0.
En basse fréquence (f < f,,), et en haute fréquence (f > f,,), la courbe de gain tend vers 2 droites asymptotiques :

lsn | ()] = 1K

) s (A.33)
flrlfrnoo |-7€:,h(f)|d3 = |K|dB —40 logyq 7

L’asymptote en basse fréquence est une droite horizontale. L’asymptote en haute fréquence est une droite de pente
-40 dB/décade ou, de fagon équivalente, de pente -12 dB/octave. Ces deux asymptotes se coupent pour la fréquence

V2

fn-SiC< 72, cette courbe admet un maximum pour la fréquence f, = f,,1/1 —2( 2 dite fréquence de résonance.
La valeur M, de ce maximum ramenée & la valeur du module dans la bande passante est appelée surtension :

2¢4/1—¢?
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A.10 Echantillonnage dans ’espace d’état

Invariance indicielle L’entrée du systéme a temps continu ug[n] u(t) y(t) ys[n]
est obtenue par blocage d’ordre 0. H zoh HA, B,C, D} { }
Avec le vecteur d’état & = x,, on obtient une représentation d’état définie par le quadruplet (/1 C’ D) sui-
vant : 4 F7
~ ~ TS
A=etT B= / AT BdrT
0 (A.35)
C=cC D=D
Invariance a4 une rampe L’entrée du systéme a temps ug[n) u(t) y(t) ys[n]
continu est obtenue par blocage d’ordre 1. 4{ foh HAa B,C, D% } %
On pose :
Ts
G:/ A"Bdr H= / ATB(1-£)dr (A.36)
0
Avec le vecteur d’état & = zy — H ug, on obtient une représentation d’état définie par le quadruplet (fl, B,C, b)
suivant :° ©8 ~ ~
A= B=G-H+e' " H
. ~ (A.37)
c=C D=D+CH
Transformation de Tustin On pose :
P=(21-A4)" (A.38)
Avec le vecteur d’état T = %(P_1 xs — Bug), on obtient une représentation d’état définie par le quadruplet
(A,B,C’,D) suivant : 7°
A=(Zr+4)p B=2PB
ok ~ 5 (A.39)
Cc=2CP D=CPB+D
On remarque que la matrice de transmission directe D= Eh( ), P10 04 b est la réponse impulsionnelle du systéme a

temps continu. Donc, méme si ce systéme n’est pas & transmission directe, le systéme échantillonné I'est en général.
Enfin, la transformation de Tustin modifiée, garantissant le méme comportement fréquentiel en une fréquence
arbitraire fj, s’obtient en remplacant Ty dans (A.39) par la période d’échantillonnage fictive T},,,q définie dans
(A.13).

AT, BT,
k 0(k+1)' 0 [ X

4. On montre que B= Z+°° T A B. On en déduit que [ 4 Ig] = exp
P7.:cs[n+1]:e s (nT)+f(n+1)T A<(n+1)T_T)Bu( ydr=e

N zH

ATy +f(n+l)T A((n+1) T, —T)B dr w. [n]

fOTSeAT Bdr

A GH AT, BT, 0
5. On montre que G = Z?xé (7,;+1), AFBet H = chxé <€+2>, AF B. On en séduit que {02\, 0 1} = exp [ 01TI'V 0 1}
Oy 00 oy 0 0

P8. Par (3.28) : zg[n + 1] = AT Zg f(n+1>T A((n+D) Te—7) Bu(r)dr
=A% zg[n] + f(n+1) T ot <<n+1) %= p [us [n]+ (1t —nTy) 7*["+¥fus[n]] dr

=]+ fi7 et B [Fudn] + (L= £) (ualn + 1] = wfn))] dr = e a 0] + (G — H) ugln] + Hugln+1]

En se rappelant la définition de Z, on obtient immédiatement la représentation d’état (A.37).
P9. La matrice P est bien définie, car Tl ne peut étre racine de s — det(sI — A), polynome caractéristique de A pour un systéme
causal stable. Examinons alors ’équation d’état : s Lx(s) = A Lz(s) + B Lu(s).

La transformation de Tustin s’écrit alors : B(z) Zx4(z) = A Zx4(2z) + B Zug(z), avec la transformation bilinéaire B(z) =

-

7.
En développant, et en utilisant le théoréme du retard : Tl (zs[n + 1] — z4[n]) = A (xs[n + 1] + z4[n]) + B (ug[n + 1] + ug[n]).
En insérant cette formule dans le calcul de Z[n + 1], on obtient I’équation d’état. Enfin, ’équation de mesure s’écrit : yg[n] =
Czy[n] + Dugln] = cpp! z4[n] — Bug[n]) + (C P B + D) ug[n] = 2C P&[n] + (C P B + D) ug[n]

P10. D’aprés la formule (3.22).

-
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